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CHAPTER I

INTRODUCTION AND BACKGROUND

A. Introduction

The structure of a strong plane shock wave in a monatomic rarefied

perfect gas is one of the simplest problems able to be posed in kinetic

theory, and one of the hardest to solve. Its simplicity lies in the ab-

sence of solid boundaries, geometrical complications, or internal mole-

cular energy. Its difficulty arises from the great departure of the gas

from equilibrium within the shock, which invalidates many of the tech-

niques used successfully elsewhere in kinetic theory.

In addition to this theoretical challenge, the modern development of

ballistics and hypersonic flight has helped to stimulate extensive theo-

retical and experimental interest in the shock problem. The experimenters

in turn have encountered great difficulties on account of the very small

physical dimensions of shocks. In fact, until very recently indeed, any

close comparisons of theoretical and experimental shock structure results

have been rather unprofitable due to inadequacies of both theory and ex-

periment.

During the last few years this situation has been appreciably im-

proved by development of the Monte Carlo method. This allows idealized

"experiments" to be performed on large computers instead of in wind tun-

nels, using a known intermolecular force law. The most developed of these

methods has been shown to be equivalent theoretically to the Boltzmann

equation and to give results which agree extremely closely with measure-

ments of high accuracy. Thus Monte Carlo results not only form the



soundest basis for our present theoretical knowledgeof shock wave struc-

ture, but, for purposes of developing other theories, can also be consid-

ered a very valuable experimental resource. However, such results remain

very expensive to obtain.

In this thesis we develop more economical kinetic theory methods for

the approximate prediction of shock structure, and compareour results

with those of the Monte Carlo method.

B. Background

A shock wave represents a disturbance in a gas that propagates with

a speed higher than that of sound transmission. In front ("upstream") of

the wave front, the gas is in its undisturbed equilibrium state, and be-

hind ("downstream") the gas attains a different equilibrium state with a

higher temperature and pressure than before. The physical extent of the

transition zone between the two states is very small, being of the order

of a few mean molecular free paths in the gas (about 10 -4 cm. for a mod-

erate shock in air). It is the detailed description of this transition

zone in the case of an infinite plane shock front far from any boundaries

that we refer to here as the plane shock structure problem.

Shock waves are associated physically with explosive detonations or

objects of greater than sonic speed passing through the gas. Such condi-

tions are characterized by the "Mach number", M, taking on values greater

than unity. For M close to unity we speak of "weak" shock waves, in

which the states on either side of the front are only slightly different

and the gas never moves far from an equilibrium state. For higher values

of M, above about 3, we speak of "strong" shock waves, in which the

state parameters n (density), u (flow velocity), and T (temperature)
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differ widely across the front and the gas departs strongly from equilib-

rium in the transition zone. It is this latter case of strong shocks

which primarily interests us in this work, as the theory of weak shocks

was satisfactorily completed manyyears ago.

The laws of thermodynamics, as was shownin the 19th century, permit

only compressive shocks, the type described above, and forbid the exis-

tence of a rarefaction shock (in a perfect gas) for which the wave would

advance from a lower into a higher pressure zone. It is convenient to

use coordinates moving with the shock front. In this frame, which we

shall use throughout this work, the shock wave is a time-independent

change of state of the gas from one condition of equilibrium flow upstream,

with state parameters (nl,Ul,Tl) , to another equilibrium state down-

stream (n2,u2,T2) , where n2 > nI, u2 < uI, and T2 > TI; uI is the

front speed in the observer's frame of coordinates.

C. Previous Theoretical Approaches

The theoretical approaches to the shock problem up to the present

time have fallen into five main categories:

I. Application of the continuum equations of fluid dynamics.

2. Solutions of the Boltzmann equation by either the Chapman-Enskog or

Grad expansion about equilibrium.

3. Approximate solutions of the Boltzmann equation using an ansatz for

the molecular distribution function.

4. Solutions to approximate ("model") Boltzmann equations.

5. Monte Carlo, or direct simulation, methods.



The chronology of these approaches generally follows the listed or-

der above, with the relative accuracy of the approaches (for strong shock

waves) also increasing in the sameorder. Wewill discuss the approaches

by category, attempting to stress only the most important advances as the

total body of work is very extensive.

I. Continuum Approaches

The earliest discussions of the shock problem centered primarily on

the existence of shock-like solutions to the Euler (inviscid) or Navier-

Stokes (viscous) flow equations of continuum fluid dynamics. The work of

Earnshaw [I], Stokes [2], Rankine [3], Hugoniot [4], and others in the

19th century was unified finally by Rayleigh [5], and (independently and

more concisely) by Taylor [6] in two papers submitted within days of each

other in 1910 and appearing in the same issue of the Royal Society of Lon-

don Proceedings.

This early work established that for a realistic wave to exist in the

steady state, a non-adiabatic process must be involved and that therefore

heat conduction is required. The necessary dissipation mechanism could

furthermore be provided by viscosity. The second law of thermodynamics

was shown to admit only compressive shocks and exclude rarefaction shocks.

The conditions connecting the states on either side of the front were de-

rived from the laws of conservation of mass, energy, and momentum and

named after Rankine and Hugoniot.

Rayleigh applied his Navier-Stokes theory to the calculation of drag

on a rifle bullet, assuming constant values for the coefficients of vis-

cosity (u) and heat conduction (_). Taylor also studied the case of

constant coefficients, obtained the solution for a weak shock and estimated
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the thickness of stronger shocks. Taylor clearly recognized the impor-

tant concept of a non-equilibrium distribution function within the shock.

The next advance wasmadeby Becker [7] in 1922, who obtained a

strong shock solution of the Navier-Stokes equations in a special case

(for a Prandtl numberof 3/4), again assuming constancy of _ and K.

The shock thicknesses predicted were so small that they not only implied

failure of the Navier-Stokes assumptions (that a rapid change of state

does not occur within a meanfree path), but also violated even the Boltz-

mannequation assumptions (that the thickness not approach the average

intermolecular distance).

An important paper by Thomas[8] in 1944 showedthat it was vital to

include the variation with temperature of u and K within the shock.

He showedthat although for strong shocks the Navier-Stokes assumptions

maywell be violated, the Boltzmann equations would always apply whatever

the Machnumber. He also included an estimate of the Burnett correction

to the Navier-Stokes formulation, yielding a slight increase in shock

thickness.

Later work on the shock problem consisted of successive refinements

of the simple continuum theory, followed by more detailed applications of

non-equilibrium kinetic theory. Calculations with the Navier-Stokes and

Burnett equations, allowing very general variation of the viscosity and

conductivity, have been madeby Gilbarg and Paolucci [9], Schwartz and

Hornig [I0], and others. The overall conclusions from all the continuum

work is that these approaches are accurate only for weak shocks (M % 2)

and cannot be extended to higher M, where they consistently underpredict

shock thicknesses.



2. Expansions about Equilibrium

This category partially overlaps category 1 as the Euler, Navier-

Stokes, and Burnett continuum equations can be derived by the Chapman-

Enskog method, which will be discussed here.

Wang-Chang [II] in 1948 made a thorough study of the shock problem

with the Chapman-Enskog method up to third order, and showed that the

resulting series solutions (involving powers of M-I) converged so slowly

that they would not be of value above M _ 1.2; for stronger shocks the

implicit assumption of the Chapman-Enskog method, that the distribution

function can be expanded about a local Maxwellian equilibrium function,

becomes unsatisfactory.

A related difficulty was encountered by Grad [12] in 1952 when apply-

ing his own expansion method to the shock problem. Grad expanded the dis-

tribution function in an infinite series of Hermite polynomials in the

velocity, with the local Maxwellian as weight function. He then set up a

finite set of moment equations for the lower expansion coefficients, and

by extending the set hoped to approach the solution of the Boltzmann equa-

tion as closely as desired. At the 13-moment stage, solutions ceased to

exist for shocks with M > 1.65. In 1964 Holway [13] showed that beyond

M = 1.851 (which corresponds to a temperature ratio T2/T 1 = 2), the

series cannot converge to the distribution function. This is because even

near the cold side where T = TI, there will always be a small number of

"hot" (i.e., "shock-heated") molecules which have diffused back through

the shock. Near the cold side, the weight function of the expansion be-

comes the local T 1 Maxwellian function and prevents a convergent repre-

t
sentation of any Maxwellian component with T2 > 2T I.

t
For convergence in the least-squares sense, the approximated function
must approach zero faster than the square root of the weight function
as c + _: this condition leads to the temperature inequality above.
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Wehave once again seen that quasi-equilibrium theories are inade-

quate for the shock problem above shock strengths corresponding to M _ 2.

3. Modelled Distribution Functions

This category of solutions is a very extensive one, as it contains

most of the work done on the shock problem since 1950. This work began

with the celebrated paper of Mott-Smith [14] in 1951, and most later au-

thors draw upon his ideas. The principle common to all these approaches

is to propose a form for the distribution function which contains a num-

ber of free parameters; equations for these parameters are then derived

from the Boltzmann equation and solved to yield an approximate solution

to that equation. Usually moments of the Boltzmann equation are used for

this purpose (and the parameters are often moments themselves), and one

obtains sets of ordinary differential equations for the parameters. Occa-

sionally a minimum-error criterion is used instead of moment equations for

the parameters.

The success of these methods depends mainly on the appropriateness

of the ansatz chosen, and the number and form of the free parameters.

The aim is always to avoid the errors of the quasi-equilibrium theories

by including the essential non-equilibrium aspects of the problem. If

the ansatz, parameters, or solution criteria are inconsistent or oversim-

plified, solutions will fail to exist for certain (or all) Mach numbers.

Because of its importance, both historically and as a source for cer-

tain ideas used in the present work, some details of the Mott-Smith method

are given in Appendix C. The method's strengths are that it predicts

strong shock thicknesses (M _ 3) in very good agreement with experiment

and Monte Carlo results; that its simple ansatz provides a very good



physical picture of the non-equilibrium situation within the shock; and

that it leads to a simple analytical formulation, involving numerical

analysis only on the level of solving a differential equation. Later

workers tried to retain as manyof these features as possible, while cor-

recting one or more of the weaknesses. These are:

a. Shock thicknesses at low Machnumberagree poorly with the Navier-

Stokes values, which are correct in this range.

b. Results (i.e., the value of B in Eqn. (C.5)) are very sensitive to

the choice of the momentequation which is used to complete the solu-

tion, and no guide to this choice is offered by the theory. In fact,

solutions fail to exist for the choice cn for n > 6 [15]
X

c. The predicted density profile is symmetrical in form, and this is

unsupported by experiment at high M.

In attempts to correct (a), while retaining the good results at high

M, many workers have proposed modifications to the simple ansatz (C.2).

Three or more Maxwellian components were included by Salwen [17], Krook

[18,19], Macomber [20], and others. The hot Maxwellian f_O) in (C.2)

was modified to an ellipsoidal Maxwellian by Holway [21]. Truncated ex-

pansions about fMS or about f_O), avoiding the convergence difficulty

of the Grad expansion, were used by Radin and Mintzer [22] and Muraoka

et al. [23]. These methods permit at least two "free" moment equations.

All succeed in improving (a) and (c), but usually not (b). However, along

with improvements in these areas come some characteristic oddities, the

most significant being the prediction by nearly all the methods of a

"temperature overshoot" at high M. That is, near the hot side of the

shock, the temperature reaches a maximum before settling out at its

8



equilibrium value T2 at large positive x. This effect is not present

in the Mott-Smith solution, although a numerical error in his original

paper led him to state that it was; the correction to this point was given

by Gustafson [24]. The best available evidence at the present time, due

to Monte Carlo results, does not support the existence of such an over-

shoot.

To deal with weakness (b), two modified approaches are of interest.

In the "Two-Fluid" method of Glansdorff [25], also used by Ziering et al.

[26], the shock is treated as a two-component system governed by a pair

of Boltzmann equations, one each for the cold and hot molecules. Colli-

sions provide a small coupling term which converts cold molecules into

hot molecules throughout the shock. Six unknownparameters appear ini-

tially and are evaluated using six momentequations which follow without

arbitrariness from the two Boltzmann equations of the method. The solu-

tion turns out to be formally identical to the Mott-Smith solution (C.5),

but with its own value of B. The resulting shock thicknesses at high M

are similar to the Mort-Smith values. The main value of the approach lies

in the physical arguments which lend support to the picture of a shock as

a mixture of two coexisting components, each with its own temperature and

meanvelocity.

Very recently, Baganoff and Nathenson [27] avoided difficulty (b) in

an original way. They closed a set of five momentequations (involving

seven momentsin all) by assuming two "constitutive relations" between

certain of the moments, rather than by assuming an ansatz for the distri-

bution function. They report shock thicknesses in excellent agreement

with experiment.

9



4. Models of the Boltzmann Equation

The idea here is to substitute a simpler "model" for the Boltzmann

equation and then solve this model equation. In 1954 Bhatnagar, Gross,

and Krook [28] proposed the first "statistical model" (known by their

initials as the BGK model), in which the collision operator J in (2.1)

is replaced by a far simpler term. As the original J is a complicated

fivefold nonlinear integral operator and forms the main obstacle to solu-

tion of the Boltzmann equation, the BGK model equation is a good deal

easier (though still not simple) to solve. The detailed development of

models is treated more fully in Chapter III, as these models form the

basis for our own approach to the shock problem.

The first applications of the BGK model to the shock problem were

made by Liepmann's group at Caltech [29,30,31] beginning in 1962, and by

Anderson [32,33] at Harvard in 1963. Anderson's work was numerically

superior and his solutions provide exact BGK predictions of shock struc-

ture for all M. The BGK shock thicknesses agree well with Navier-Stokes

values for weak shocks but are appreciably smaller than the Mott-Smith and

experimental values for strong shocks. In better accord with experiment

are the BGK predictions of an asymmetric density profile and no tempera-

ture overshoot at high M.

In 1963, Holway [35,36] proposed an extension of the BGK model which

he called the Ellipsoidal Statistical model, and obtained approximate

ansatz-moments solutions for it [37] which indicated shock thicknesses in

better agreement with the Mott-Smith values for strong shocks, together

with a temperature overshoot. It was not clear, however, whether the

overshoot was a property of the model itself or just a side effect of the

I0



approximate momentsmethod used for solution. At low M, the Navier-

Stokes solutions were recovered.

Very recently, Giddens et al. [38,39] have reported numerical calcu-

lations by the discrete-ordinates method for both the BGKand Ellipsoidal

models. Their BGKresults agree with those of Anderson, but results for

the Ellipsoidal model have not been published in detail. As will be seen

in the later chapters of this work, the explicit calculation of a distri-

bution function for models of this type is unnecessary.

A few final remarks can be added on a different sort of model, pro-

posed in 1964 by Broadwell [40]. Here the gas itself is modelled physi-

cally, the molecules being idealized as moving with a single speed in one

of the six Cartesian directions (± x,± y,± z). The Boltzmann equation

for such a system reduces to a coupled set of ordinary differential equa-

tions for the numberof molecules in each direction. A shock solution is

possible for the single case of infinite M, and has the Mott-Smith form

(C.5) with a sensible value of thickness. Such a simple model is not of

value for quantitative predictions, but is included here because of its

suggestive idea of simulating the molecular motions directly in a model.

This leads us naturally to the final category.

5. Monte Carlo Methods

The "Monte Carlo" approach is a very recent development which uses a

large fast computer to perform a probabilistic numerical experiment. To

date, three main variants exist, of which the third will be of especial

interest to us.

The first method, that of Hicks et al. [41,42,43], simply attempts

to estimate the fivefold Boltzmann collision integral by random sampling.
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The method is not very efficient, but accurate results have been obtained

with it.

The second ("test particle") method has been used by Haviland [44]

and Perlmutter [45], and uses a successive linearization approach. A

solution is assumed, leading to a distribution of target molecules. Test

particles are then introduced and followed as they scatter in this back-

ground, but do not affect the background. Whenresults have accumulated

sufficiently, a new background of targets is generated which accounts for

the results correctly, and the process reiterated. This again is not a

very efficient method, but improvementsare possible by input of physical

insight.

The third ("direct simulation") method is due to Bird [46,47,48],

and is both efficient and applicable to nonlinear and unsteady problems

without difficulty. Its efficiency comesfrom a collision sampling method

in which molecules are not followed deterministically but advantage is

taken of the Boltzmann assumptions:

Force range << molecular spacing << meanfree path

The problem space is subdivided into small cells and collisions are gener-

ated randomly amongmolecules occupying the samecell. Collision proba-

bilities are madeproportional to a pair's relative velocity times the

cross-section. The numberof collisions sampled in a cell is madepropor-

tional to the local collision frequency by assigning each collision its

correct relative collision time, and sampling until a suitable time step

is exhausted. After each step all molecules are allowed to fly freely and

collision sampling recommenceswith updated cell assignments.

12



Bird has shownthe method to be equivalent in principle to the

Boltzmann equation [49], and to be feasible in use with convenient choices

for the cell volumes and the time step. Shock wave results of high accu-

racy have been obtained. In the only instance to date of a physical mea-

surement having comparable accuracy (that of Schmidt [50], with a density

profile in argon determined to within a few percent at Mach8), the ag-

reement between computedand measureddensity profiles is well within the

experimental uncertainty. An inverse-12th power force law was assumed

for this Monte Carlo run, consistent with the argon viscosity-temperature

relation _ _ T0"68 measuredrecently in the appropriate range by Matula

[51]. Thus, as stated in the Introduction, the Bird method seems to pro-

vide the most convenient and reliable reference with which to compare

approximate theories of shock structure.

D. Scope of the Present Work

Having surveyed the extensive approaches made by others to the shock

problem, we will now outline our own approach, which falls into category 4

above. This approach allows economical yet accurate calculations of shock

structure to be made without any assumptions or restrictions on the form

of the distribution function.

In Chapter II we present the overall formulation of the shock problem,

beginning with the Boltzmann equation. We then proceed to a general mod-

elled form of this equation, transforming it finally into the equivalent

system of moment equations used for solution.

In Chapter III we present details of the four statistical models used,

including derivations of the two new models we have developed during the

course of this work.

13



In Chapter IV we discuss the numerical methods used to calculate

solutions to the various model equations, which are pairs of coupled non-

linear integral equations. Westress those methods which are either rel-

atively newor which were developed by ourselves for the present work.

In Chapter V the results of the calculations are given and a discus-

sion of their physical significance is presented. Comparisonswith Monte

Carlo results are made.

In Chapter VI we present a summaryof the work and our conclusions.
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CHAPTER II

FORMULATION OF THE PROBLEM

A. The Boltzmann Equation

The equation describing the behavior of a monatomic gas in steady

one-dimensional flow is the Boltzmann equation for the molecular distri-

bution function f:

Df(c,x)
Cx _x -fffff

__A_[f,f]_ f_ff[f] (2.1)

=A j[f,f]

Here,

f(£,x)dxd_ =

Ct,C{ =

g

b __

_ [f,f] =

_[f] =

the expected number of molecules in the space element

dx about x with velocities in the range d£ about £.

the velocities before a binary collision of two molecules

which after collision have respective velocities c,c I.

I_-£iI = I£'-£_I, the relative speed of colliding

molecules.

the collision parameter: the distance of closest approach

of the molecule centers in the absence of a collision.

the orientation angle in space of the plane of collision.

fffff f(&')f(£_)gbdbdcd£1, the Boltzmann "gain operator".

fffff f(£1)gbdbdsd£1, the Boltzmann "loss operator".

The boundary conditions associated with (2.1) for the shock problem

are:

15



where

f(c,x : -_) : f(O)(nl,U1,Tl) _ flO) I

/Af(c,x : +oo) = f(O)(n2,u2,T2) = f

f(O) is the Maxwellian distribution function defined by:

f(O)(n,_,T) : n(2_RT)-3/2exp[-(_-_)2/2RT] ,

(2.1a)

(2.2)

with parameters

temperature.

the velocity

write:

n, the density; 2, the flow velocity; and T, the

In the case of a one-dimensional flow in the x direction,

u will be understood to be in this direction and we shall

f(O)(n,u,T) = n(2_RT)-3/2exp[_(c-ui)2/2RT ] , (2.2a)

where i is a unit vector in the x direction.

The upstream and downstream sets of parameters

(n2,u2,T2), respectively, are determined as follows.

(nl,Ul,Tl) and

Two of the six

parameters, n2 and T 2, are fixed arbitrarily and a third is obtained

by fixing the upstream Mach number MI:

M1 _ Ul/(yRTl)I/2 , (2.3)

where :

y = Cp/C v (= 5/3 for a perfect monatomic gas) , (2.4)

and Cp,C v

spectively.

now on.

are the specific heats at constant pressure and volume, re-

For convenience, we will drop the suffix 1 from M1 from

16



Three more relations, the well-known Rankine-Hugoniot relations, state

the one-dimensional conservation of mass, momentum, and energy:

nlu I = n2u 2 ,

nl(u _ + RTl) = n2(u _ + RT2) ,

nlUl(U _ + 5RT l) = n2u2(u _ + 5RT 2)

Algebraic manipulation of (2.3) - (2.7) yields the results:

u2/u I = (M2+3)/4M 2 _ Ur(M) ,

T2/T 1 = (M2+3)(5M2_I)/16M 2 _ Tr(M) ,

n2/n I = 4M2/(M2+3) _ nr(M )

Choosing the arbitrary values for n2 and T 2 as:

(2.5)

and:

(2.6)

(2.7)

(2.8)

(2.9)

(2.10)

n2 = 1 , (2.11)

RT2 = 1 , (2.12)

we may finally write the expressions for the upstream and downstream boun-

dary parameters in terms of the single dimensionless parameter M:

n2 = 1

u2 = uI Ur(M)

T 2 = I/R

(2.13)

n I = I/nr(M ) ,

uI = M _ ,

T1 = I/(RTr(M)) ,
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B. Model Boltzmann Equations

Equation (2.1) is formidable due to the very complicated nonlinear

Boltzmann collision operator J[f,f]. This operator represents the net

rate of increase of f(_,x) in time due to molecular collisions; its

complexity prevents exact solution of (2.1). The idea consequently

emerged of replacing J by a simpler "model" operator which would allow

solution of the resulting "model Boltzmann equation" while still giving

a satisfactory account of the physical collision process. The details of

choosing appropriate models for J will be discussed in Chapter III. To

complete the present formulation we simply note that all the models we

shall employ have the form:

J[f,f] _ K(mi) {#(_,mi)- f} (2.14)

The function K(mi), which models the operator _[f], represents an

average collision frequency and is assumed independent of c. The func-

tion _(&,m i) models _[f,f]/uR_[f] and is called the emission function

as it describes the average distribution of molecules following a colli-

sion. The quantities mi are velocity moments of f defined by:

A
mi : f @i(c-)f(c)dc ,

with the @i being a chosen set of functions of _.

esting low-order moments are:

A
mI = n = i fdc ,

A 1 f fcdcm2 : u- n

m3 T _A 1= 3Rn f fC2dc

= z A I f fcOCdc= n : --

:q_A l2n f fC-C2dc

Some of the inter-

, C : c - u ,

, C°C CC - _ C26 ,
.)

(2.15)
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These are physically the density n, the flow velocity 2, the tempera-

ture T, the stress tensor _, and the heat flux vector _. It will be

noted that all the hydrodynamical variables of common interest are inclu-

ded in the set mi, i = 1 to 5, and in this work we restrict mi to

this set.

The major simplifying feature of all these models is their replace-

ment of J by an operator on the moments of f(_,x) rather than being a

fivefold integral operator on f itself. This allows reduction of the

model Boltzmann equation to equations for the moments, which are the quan-

tities of physical interest, rather than for the distribution function f.

Once the moments mi are determined for a model equation, f can then

be generated if desired.

C. Exact Moment Equations for the Models

A closed set of coupled nonlinear integral equations for the moments

m. is obtained as follows. For convenience,
1

into a new coordinate t, defined as:

K(m i) is first absorbed

X

dt = K(x)dx or: t = | K(x)dx
J

x 0
t (2.16)

dx = dt/K(t) or: x = f dt/K(t)

P

J
t o

where the dependence of K upon x or t is understood to be via the

mi. Here x 0 and t O are arbitrary reference origins. Apart from mere

formal simplification, the use of the t frame has the advantage that in

it shock profiles tend to an invariant form at high values of the Mach

number, M. This will unify our present work, which deals with strong

shocks falling into this range of M.
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In the t-frame, Eqn. (2.1) with the model operator (2.14) becomes:

_f(c,t) + f(c,t) = _(c,mi(t)) , (2.17)Cx _t -- -

with the boundary conditions (2.1a) still applying. Formally integrating

(2.17) over t, after division throughout by

equation for f:

c x, we now get an integral

ii _(_'mi(t')) -(t-t') c > 0

dt' Cx exp Cx ' x '

f(_,t) = _(c'mi(t')) -(t'-t) (2.18)
dt' - exp c < 0

(-c x) (-c x) ' x '

I _ _(c'mi(t')) t-t'dt' - exp - ,
cxl Cx

r

using the notation i to indicate the split range of integration.

Taking velocity moments of equation (2.18), we obtain a set of moment

equations:

;if I  Icm I ,,
mi(t) : dc dt'qbi(c) iCxl exp - (2.19)-oo -- CX

Without restricting the mi, (2.19) would be an infinite set of equations,

but with the restriction adopted in Section B that only the set mi,

i = 1 to 5, appears in _, (2.19), for i = 1 to 5, becomes a closed

set f of coupled integral equations for these mi. For one-dimensional

flows, the only five nonzero components of these moments are: n, u, T,

Txx, and qx' which correspond respectively to the five @i choices:

1 Cx/n C2/3Rn (C 2_ 1C2)/n and C C2/2n' ' ' X _ ' X "

Note that because the set (2.19) is derived by taking moments of Eqn.

(2.18) rather than of the Boltzmann equation (2.17), no "extra" moments
are generated to prevent closure of the set.
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Furthermore, if a related set of moment equations is substituted,

these five components can be obtained by solving only a pair of coupled

equations. Consider the moments _i corresponding to the choice _i =
2 2 2

I, c x, c , Cx, and CxC These moments have the following relation to

the five nonzero mi of the preceding paragraph:

Ul = n ,

u2 = nu = constant of flow t ,

_3 = n(3RT + u2) ,

_4 n(RT + u 2 + ) == TXX

_5 = nu(5RT + u2 + 2Txx ) + 2nqx

constant of flow t ,

= constant of flow t

(2.20)

Because u2' u4' and _5 are constants of the flow, and Txx

both vanish at the endpoints, only equations for _l(t) and

needed to determine all the

1 to5.

2
and c

_i' and hence all the nonzero

These two moment equations are generated by putting

into Eqn. (2.19), yielding:

and qx

_3(t) are

mi(t), i=

 i(c) : l

i [   Cx,Ct,mi( iI lllit j
_l(t) = -_dCx 0 2_ctdct __dt' Cxl exp-

_3(t)-_4 = dcx 2_ctdc t dt' Cx I exp-
--_ 0 --_

(2.21)

where we have written the velocity _ as (Cx,Ct), c t being the compo-

nent transverse to the x axis, and have used the relation c 2 = Cx2 + ct'2

Moments of the collision operator J taken with the collisional invar-
col A

iants _i = l, cx and c2 must vanish. By (2.1), the same moments
_f

of cx _ must also vanish. Integrating this result over x, the mo-

ments of f taken with c ,col
x_i must therefore be constants. These

moments are _2' _4' and u5' respectively.
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D. The Hn Kernel Functions

The kernels of Eqns. (2.21) are still inconvenient for computation

as they involve double quadratures over the components of _. For all

the models t_ be studied, however, the emission function _ has the form

of a Maxwellian function (or functions) multiplied by velocity polyno-

mial(s). For this case the kernels can be expressed in terms of a well-

studied [52,53] series of functions defined as:

Hn(p,q) _ l_]_I yn-2 [½ )2 ]- _ exp - (y-p + q/y dy (2.22)

0

The Hn(P, q) functions are conveniently computed using asymptotic or

power series methods (as described in Ref. 53) for values of n from l

to 3, and for all higher n use can be made of the recurrence relation:

Hn(p,q) = PHn_ 1 + (n-2)Hn_ 2 + qHn_ 3 (2.22a)

Another convenient method for computing

n = 1 to 3 are known at nearby po,qo,

series of the form:

Hn(Po+6P,qo+6q)

Hn(p,q), when Hn values for

is a bivariate Nth-order Taylor

(i+i)=N f_i+JHn\

Hn(Po'qo) + i,j=l l_q) p:po

q=qo

6pi6q j
i!j! '

(2.22b)

where the partial differential coefficients are computed using the rela-

tions:

_H

n (2 22c)
_p - Hn+ 1 - pHn , •

_H
n

- H (2.22d)
_q n-l
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By substituting the emission function _ for each model into Eqn.

(2.21), performing the c t integration, and using (2.22) as shown in

Appendix A, we find that each model can be cast into the same general

form used fQr numerical solution"

n(t) = I n(t')/_n(n(t')'T(t');t-t'ldt' ' 1

-_ (2.23)

n(t)T(t) = I n(t')A_T(n(t')'T(t');t-t')dt' + _R [_4-_/n(t)]
D_

The kernels /C" in Eqns. (2.23) for all the models are sums of low-

order H functions; the actual kernels obtained for each model are
n

given in Appendix A. All kernels _" possess a logarithmic singularity

at t' = t; as an example, we display the resulting kernels for the sim-

plest of the models, the BGK model, for which the emission function

_u : f(O)(n,u,T):

-- _2sgn

_,BGK = [RT(t')] 2 HI n(t )v_T(-t-r) -n ' ' '

,BGK _ 2 T(t') BGKT 3 #Cn
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CHAPTERIII

DERIVATIONOFTHEMODELS

CONDITION I.

CONDITION 2.

A. General Physical Considerations

Of the four kinetic models to be considered, two were developed by

previous authors---the BGK [28] and Ellipsoidal [35] models---and two---

the Polynomial and the Trimodal Gain Function (TGF) models---during the

present work. t

The derivation of all kinetic models is subject to certain general

physical conditions. These are:

Conservation of mass, momentum, and energy. Integrals of

the collision operator J with the collisional invariants

vanish:

IJ .{_i(_)} d_ : 0 ; {_i} : {l,_,c 2}

The collision operator acting on the equilibrium Maxwellian

distribution function must produce a null result:

j[f(O),f(O)] = 0

CONDITION 3. J is rotationally invariant.

Within the scope of these conditions, a great deal of freedom remains

for the exercise of physical intuition and inventiveness in the design of

models. The basic intent is to replace the full Boltzmann collision

t Independently, a Russian author, E. M. Shakhov [54] recently published
a version of the Polynomial model.
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operator of {2.1) by a simple operator that retains as many of its prop-

erties as possible. To obtain the desired simplicity a number of restric-

tions is usually put on the models. In our work we make the four assump-

tions:

I. Model operators act only on a small number of moments mi[f], i = 1

to N, and not on f itself. The moments mi, i = 1 to 5, are

defined in Eqns. (2.15).

2. The form of the models is that of (2.14):

JM : K(mi) {_(c'mi)- f} ' (3.1)

where K is a collision frequency and _ the emission function.

3. The quantity K is independent of the molecular velocity _, being

only a function of the moments mi. This is an exact property for

Maxwellian molecules (repulsion proportional to the inverse fifth

power of separation) and its adoption greatly simplifies the model

equations. Models in which K is allowed to depend on c will be

discussed in Chapter V and Appendix D.

4. The behavior of the model operators close to equilibrium should re-

semble that of the full Boltzmann linearized operator.

Although these conditions and assumptions form a basic framework for

the construction of kinetic models, they specify very little when f(c,x)

is far from equilibrium. Because of the dependence of J[f,f] on the dis-

tribution function, a generally valid yet simple model of the collision

process is then hard to find. However, the design of a model specially

suited to a particular class of non-equilibrium distribution functions is
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easier to achieve. A special-purpose model for the plane shock problem,

the TGF model, is developed in Section F.

Close to equilibrium it is possible to treat all the models in a

unified manner. In the following two sections we derive some general re-

sults for this purpose. In the remaining sections of this chapter, the

individual models will be discussed in more detail.

B. Linearized Models

We first proceed to relate the behavior of the model operators JM

to that of the Boltzmann operator J in the case of small disturbances

from "absolute" equilibrium. Our treatment in both this section and the

next will generally follow the elegant exposition by Uhlenbeck and Ford

[55].

Define a dimensionless velocity:

c/WT 0,

and the absolute Maxwellian distribution function by:

fo(_) _ nO(2_RTo )-3/2 exp-_ 2

For the rest of this section, the tilde on

sume that:

will be omitted. We as-

f(c,r) ÷ foil + qb(c,r)} ,

where the dimensionless quantity @ is small. Inserting this into equa-

tion (2.1) and neglecting second and higher order terms in @, we obtain

the linearized form of the Boltzmann collision operator:
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J[f,f] + foJ(qb)=

[56],

with :

l ,

(3.2)

(2RTo)3/2 dC_lgbdbde

For any intermolecular force law, as shown by Chapman and Cowling

J(@) may also be written:

J(@) = -_(c)q_(c)+ Ill fo(cl)K(c'c-l)@(Cl)dCl ' (3.2a)

_(c) = ffJ'If fo(Cl) (2RT0)3/2 dC-lgbdbd_

This operator has the property:

Whatever the molecular force law, there exist five zero eigenvalues

of the equation"

.

J(_i ) : _i_i , (3.3)

corresponding to the five collisional invariants:

{_i} = {l,Cx,Cy,Cz,C2 }

All other eigenvalues are negative and real.

well molecules, Wang-Chang and Uhlenbeck [57] showed:

The full series of eigenfunctions of (3.3) forms a complete ortho-

gonal set with respect to the weight function fo' and in polar

coordinates this set can be written:

, _.(r) ,c 2)
_r_m = Nr_mY_m (O'@Ic _+I/2 £

Furthermore, for Max-
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.

_(r)^
where the Y_m are spherical harmonics, the _+I/z are Sonine

polynomials (i.e., associated Laguerre polynomials), and the

Nr_ m are normalization factors.

The collision frequency o(c) in Eqn. (3.2a) is a constant, KO,

for Maxwell molecules, and the eigenvalues _r_ converge to -K 0

for large r and _; however, K0 is infinite unless some cutoff

is assumed for the Maxwell force law. This assumption is usually

made. The "constant collision frequency" for the Maxwell case is a

consequence of the result that for Maxwell molecules the quantity

gbdb in the J[f,f] integral is independent of g.

The linearized Maxwell molecule Boltzmann operator can be written

in the manner of Gross and Jackson [58]:

foJ (qb) : foKo{
i=l

c_

= foKo _

i=l

(_+l)ai#i(C) - @}

_B (c) ,iai@i _

with:

(3.4)

ai -3/2 I e-c2= @_i(c)dc

(2RTo)3/2

no I fo@_i(c)dc

The Gross-Jackson models are obtained by truncating the series in

(3.4) at some finite N.

In (3.4) and what follows, we have replaced the index pair r,_

by the single index i. The set of degenerate eigenfunctions _r_m
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(with fixed r and _) is then fashioned into a tensor of rank _ in a

standard way and denoted by @i as shownin Table I.

Having summarizedthe necessary results for the exact Boltzmann

operator J(@), we now turn to the linearization of the model operators,

JM" The model operators dependonly on the momentsof f, mi[f]

f f@id_, where the @i are chosen functions of _. Thus, if:

f _ fo + _f with: 6f =A fo _(_,_) ,

then:

mi[f] ÷ mi, 0 + 6mi with: 6mi = f 6f¢id C

and:

-_ _,0 6mi &-- fOJM (@) (3.5)JM + i=l_ \_mi]f=fo

Using (3.1) in (3.5) we get:

fodM(_ ) = K(mi,o ) _ _m._fo _ + _K 6mi
= f=fo 1 "= f=fo

or:

)_ - fo (3.5a)
fOJM(#) : K0 '= 0_mi .

To assist comparison of (3.5a) with the Maxwell molecule form

(3.4), we can choose the functions @i

well eigenfunctions _i(_) of Table I;

in m. to be the normalized Max-
1

this leads to the result _mi = a i.

Equation (3.5a) may now be written:
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TABLE 1

THE LOWER EIGENFUNCTIONS AND EIGENVALUES OF THE MAXWELL OPERATOR J(@)IK 0

i r _ m xB
I _i (_) ai

A t
1

n-n 0
1 0 0 0 0 1

nO

2 0 l 0,-+-I 0 V"2c V"2"u_/(2RTo)l/2

O o o o

4 0 2 0 ,-+I,_+2 -3/5 v_(c_c_c-½ =_c2)_ v"2"c°c v'2"3_/2RT0 _T__/2 RT

i i o,_+I -2i_ _ c(_--c2) -2,_/(2RT0)3/2 -2_/(2RT) 3/2

t The quantities Ai will be defined and used in Section C.



foJMKoI!I IIoal 3b
and for this to be a Gross-Jackson model we must have:

All the models used in this work satisfy (3.6) for values of N be-

tween 3 and 5, except that for some models _4 _ _ and/or _5 _ _"

Thus the linearized form of all our model operators is the Gross-Jackson

form :

fOJM(q_) = foKo (_i+l)ai_ i(c) - . (3.7)

1

C. The Chapman-Enskog Treatment

The Chapman-Enskog treatment of the Boltzmann equation involves a

"local" linearization which differs from the "absolute" linearization of

the previous section.

The Boltzmann equation is to be solved for flows in which the distri-

bution function f is always close to the local equilibrium form

f(O)(n,_,T), where the parameters of this Maxwellian are the local macro-

scopic density, velocity, and temperature. Small deviations of f from

f(O) are produced by the streaming operator, while the collision operator

drives f back towards f(O).

The distribution function is thus assumed to be of the form:

f(c,r,t) : f(O)(n,u,T) {I + @(c,r,t)} , (3.8)
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_(here _ is a dimensionless quantity << I.

f(O) are the momentsof f, mi, i = 1 to 3,

tions: 1

I f(O)@ = 0dc__

Becausethe parameters of

must obey the condi-

(3.9)

Equation (3.8) can now be substituted into the Boltzmann equation.

In the first-order Chapman-Enskog approximation for _, to which we con-

fine ourselves here, only zeroth-order contributions to the streaming

term are retained [46] and we have an inhomogeneous, linear integral equa-

tion, with the only term containing @ being the linearized collision

term f(O)j(@). Here J is the same linearized operator as in the pre-

vious section.' For a solution to such an equation to exist, the inhomo-

geneous term must be orthogonal to any solutions of the homogeneous equa-

tion. In our case, this equation, f(O)j(@) = 0 has the five solutions

{_i}, the collisional invariants of (3.3), whatever collision law is

assumed. We must therefore impose the solubility conditions:

I (Streaming terms of Boltzmann equation) {@i}d_ = 0 (3.10)

In the first approximation, these solubility conditions turn out to

be the Euler macroscopic equations for n, _, and T, with the scalar

pressure equal to nkT. Their use allows the removal of explicit time

dependence of the streaming term, and the first-order equation for _ be-

comes:

f Due to the use of local, not absolute, Maxwellian parameters, the

eigenfunctions of J(_) are _i(_), with _ _ (c-u)/(2RT) I/2
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o _)]f(O)[2D:C C + L _n T . c_C_(C2 - - : f(o)J(c_) (3.11)

where :

= + d,

v _n T _A 1 _T
- T _x.

1

C _A_ C__/(2RT)I/2 : (c_u)/(2RT)I/2

where the Ai

Table 1.

For the model operators:

If(O)JM(@ ) = f(O) K _ (_i+l)Ai*i(_) - ,

=I

1 f(O)@_ (C)dC, and are given inare defined as E f i

(3.12)

We can now perform a unified Chapman-Enskog treatment for all the

models. Using the definitions of _i

with the collision term (3.12) as:

from Table I, we can rewrite (3.11)

f(O)K _ (ki+l)Ai_i(_)- (3.11a)

Li :l

and the associated conditions (3.9) can be rewritten as:

A. = 0 , i = 1 to 3
1

(3.9a)

The solution for @ satisfying (3.11a) and (3.9a) is:

(3.13)
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using which, after algebraic manipulation of (3.11a), we obtain Newton's

relation:

T : - 2-£LB ; u _ viscosity , (3.14)

Fourier's relation:

K VT ; < _ heat conductivity , (3.15)
- p -

and the further result:

K = (p/_)/IX41 = \2< ]'IX51

where p = pRT is the scalar pressure, and p = mn

Using the definition of the Prandtl number

(3.16)

is the mass density.

we also obtain

Pr = _5/_4 (3.17)

To summarize the results of this section: we have applied the first-

order Chapman-Enskog method to the general form of model Boltzmann equation

used in this work, and have obtained approximate relations (3.16-17) for

the model collision frequency K and Prandtl number Pr in terms of the

model parameters _4 and _5 and the quantities p, the pressure, and

u, the viscosity.

D. The BGK and Ellipsoidal Models

We are now ready to discuss the development and properties of the

four models used in this work. In this section we consider the two models

developed by previous authors.

The BGK model of Krook et al. [28], developed in 1954, t adds a fur-

ther idea to the basic framework outlined in Section A. This idea is

# The BGK model was independently developed by Welander [60], also in 1954.
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suggested by a property of hard-sphere molecules. Scattering between two

hard spheres is isotropic in the center-of-mass system. This suggests

that for a general molecular distribution the emission of scattered mole-

cules should be approximately isotropic in the flow frame, or that the

emission function _ should be a function of the thermal speed C. The

simplest choice for _(C) subject to the conditions of Section A and

this assumption of isotropy is the BGK choice:

_BGK(c,mi) = f(O)(n,_,T) = n(2_RT)-3/2exp[-C2/2RT] , (3.18)

with C _ c - u. Thus, the BGK model is:

jBGK : KBGK{f(O)(n,u,T)_ f} . (3.19)

The linearized form, applying equation (3.5),is:

f(n-nol (T-To_
+ 2E._ + (c2-3/2) - , (3.20)

foJBGK(@) = foKo _\ nO / \ TO J

with _ u_/(2RTo)I/2 This is just the Gross-Jackson form (3.7) with

N = 3, the minimum allowable No All eigenvalues _i' i > 3 of the

BGK model are equal to -I. Using the Chapman-Enskog results (3.16) and

(3.17), we can write

KBGK = (P/U) ; p : nkT : pRT , (3.21)

and

Pr BGK : 1 (3.22)

The value of unity given by (3.22) for the BGK Prandtl number is in poor

agreement with the correct perfect gas value of close to 2/3.
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The Ellipsoidal Model, developed by Holway [35] in 1963, f was an

attempt to improve the BGK model, particularly the value of Prandtl num-

ber, by relaxing the BGK assumption of an isotropic emission function.

The emission function was generalized to the bivariate Gaussian (or

"ellipsoidal Maxwellian") form:

1 (ci-bi) -bj) ,_E(c) _, exp- _ Z cij (cj

i,j

where _ij and bi are parameters to be determined and where i and

sum over the three Cartesian directions x, y, and z. Application of

the conservation Condition 1 yields:

1
_E(c__,mi) = n(2_) -3/2 (det _)I/2 exp - _:CC , (3.23)

wi th

= (_± + RT6) -I

= m__4 of (2.15) ,

= an adjustable parameter ,

6 = the unit tensor ,

C = c - u

The main advance over the BGK model is the presence of the adjustable

parameter _, which can be chosen so that the Prandtl number will be 2/3.

The linearized form of the Ellipsoidal model operator jE = KE{gE_f} is

of the Gross-Jackson form (3.7) with N = 4. In this model, the

f The Ellipsoidal model was later independently derived by Cercignani
and Tironi [61].
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eigenvalue

sult (3.17), we obtain

to yield:

_4 turns out to equal

Pr : I/(l-X),

(_-I). Using the Chapman-Enskog re-

which suggests the choice _ = -I/2

Pr E = 2/3 , (3.24)

KE 2
= T (P/U) ; P = nkT (3.25)

Although Pr is improved by this choice of _ = I/2, the result-

ing value of _4 = - 3/2 is even further from the correct Maxwell mole-

cule value of - 2/3 than was the BGK value of - I. Furthermore, as we

shall see later, the anisotropy of the emission function in the Ellip-

soidal model is in the opposite direction to that expected in the shock

problem, and this is related to the choice of _. However, the choice of

positive values of _, leading to better values of _4 and more appro-

priate emission functions, leads also to outsize (or infinite) values of

the Prandtl number.

E. The Polynomial Model

The first of the two new models developed during the course of this

work will now be described. It represents an attempt to extend the BGK

model in a more systematic way than the Ellipsoidal model, but still in a

general manner, unrelated to any particular problem. The main idea is to

develop a nonlinear hierarchy of models related in form to the well-known

Gross-Jackson hierarchy of linearized models [58]. The requirements de-

manded of the scheme are:

I. To satisfy the basic framework of Section A.

2. To possess the Gross-Jackson linearized form (3.7).

3. To have a Prandtl number of 2/3.
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There are many ways to satisfy these requirements, but a simple solu-

tion is obtained as follows: by generalizing the domain of Eqn. (3.6)

away from the linearized range f _ fo' we are led to suggest a

"delinearized equation" for the emission function _:

_a i

where the function F

- (_i +l)_i(_)F(c'ai) ' i = 1 to N , (3.26)

must satisfy the condition:

= fo
F(_'ai f=fo

F is all-important.

(3.26a)

Of course the choice for Two simple possibilities

are F : f(O)(n,_,T) and F = _. The second choice leads to emission

functions of the type _ _ exp[_(_i+l)Ai_i(C)], the type suggested by

Cercignani and Tironi [61] as extensions of the BGK model. However, this

becomes physically unreasonable when powers of c greater than 3 appear

in the exponential. The mixed choice

N = 4 ,

F(_,ai) = f(O)(n,_,T) , i = 1,2,3 1

J= _(_,a i) , i = 4

leads to the Ellipsoidal model.

(3.26) as a source of nonlinear models.

We retain the very simple choice;

F(_,ai) = f(O)(n,_,T) ,

These examples show the generality of

all i , (3.27)

which leads to what we have called the Polynomial model, with emission

function:
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(3.28)"_P°l(c_,mi) = f(O)(n,u_,T) + _ (li+l)Ai_i(_

i=4

The quantities Ai and _i are those of Table l, and again C_= c- u_

and _= C_/(2RT) 1/2 It is easily verified that jPol . KPOl{_Pol_f}

satisfies requirements l and 2 for all N. In this work we apply the

model with N = 5. To achieve requirement 3 we fix the ratio _5/14 = 2/3.

The Chapman-Enskog results (3.16-17) for the model are:

PrP°l = 2/3 , (3.29)

and

KP°I = (p/p)/[141 . (3.30)

With N = 5 and the ratio 15/I 4 fixed, the Polynomial model has a

single adjustable parameter 14 . A main advantage of the model, over the

other models we use here, is the ability to vary 14 while leaving Pr

unaffected. The effect of an adjustment of 14 upon the emission func-

tion _Pol is clearly displayed by equation (3.28), in contrast with its

very indirect effect in the Ellipsoidal model.

F°

its emission function

process _lithin that flow.

should possess a value of

The Trimodal Gain Function (TGF) Model

For a model to give a satisfactory description of a physical flow,

must closely represent the physical emission

Furthermore, for the shock problem, the model

1141 such that the scale length in the shock,

which is roughly proportional to this parameter, is of the correct order.

All three models discussed so far have allowed only small deviations

of _ from isotropic emission in the flow frame. This does not adequately
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represent the physical emission process inside a shock. The emission

function in a shock can be rather well estimated because the distribution

function is known to resemble the Mott-Smith bimodal form (C.2). Since

collisions tend to smooth the distribution, the emission function should

have a shape intermediate between the Mott-Smith and Maxwellian forms,

i.e., a smoothed bimodal shape.

Evidence for the bimodal form of the distribution function in a shock

wave is provided not only by the success of the Mott-Smith theory, but by

Monte Carlo [46,48] and model [31] calculations in which the distribution

function has been evaluated. It should be stressed that even a BGK shock

calculation will predict a bimodal distribution function, which is physi-

cally inconsistent with an assumed isotropic form of _.

We have developed a new model for this work which allows _ to fol-

low closely the form found physically in the shock problem. For reasons

which will become clear, the model is called the Trimodal Gain Function

or TGF model.

The detailed requirements for the model to satisfy are set out as

follows:

I. The emission function _ must be a good fit to the emission function

calculated on the basis that the distribution function is of Mott-

Smith form and that the collision frequency K is velocity-indepen-

dent.

2. The model emission function should have a simple analytical form,

preferably one similar to the other models to facilitate the numeri-

cal analysis.

3. The model must obey Conditions I-3 of Section A.

4. The linearized model operator should have a sensible value of _4"
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We now discuss how requirements I-4 are satisfied and lead to devel-

opment of the TGF model.

Requirement 1

Referring to Chapter II, we recall from Eqns. (2.1) and (2.14) that

T is a model for _[f,f]/_[f], and that K is a model for _-_[f]. If

f is assumed to be the Mott-Smith form discussed in Appendix C:

(l-_(x))fl O) + _(x)f_ O) (3.31)f = fMS -

where v(x) is:

n(x)-n
v(x) - 1 , (3.32)

n2-n I

v_

then the functions JMS[fMS,fMS] and _<-MS[fMS] may be calculated in

closed form for the case of quasi-Maxwell molecules, appropriate for a

model in which K is finite but independent of c. By "quasi-Maxwell"

here, we mean molecules which scatter isotropically like hard spheres,

but with diameters inversely proportional to the relative collision speed

g. In a Maxwellian distribution this leads to a constant mean collision

frequency, rather than a constant mean free path as for hard spheres.

It also leads to a viscosity coefficient proportional to the temperature,

rather than to the square root of the temperature. Deshpande and Nara-

simha [62] first performed such a calculation for the case of hard-sphere

molecules, and in Appendix B we give our related calculation. The form

of _MS and _MS is:

: (l_._)2_l + 2_ + 2_(I-_)_
l 22 12

= (l-v)< +v_Y_2 ,

(3.33)
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where, for quasi-Maxwell moleculest:

_i = 2_2ni

_ii : Sf!°)1 1

_12 =
(Bl_2)l/2(_I/2+_/2)

with :

eQ . sinh R
R

(3.34)

Q A 1 _ _: _(_) ,

+

A= Bil/2(C_U i) ,

Bi _ I/(2RTi) ,

Q2_ (c__1 {_2)2

and i=l or2.

The quantity
2

o is a normalizing constant with units of a cross-

section. In deriving Eqn. (3.34) we have assumed isotropic scattering in

the center-of-mass system (as is the case for hard spheres) but a colli-

sion frequency independent of relative speed (the Maxwell molecule result).

The model appears to retain most of the features of Maxwell molecules.

For hard spheres, the corresponding results are:

^ 2 2_-2_(0)@t 2 3 _2__i z_ o _i Ti _ '2' i' '

: _i _(0)ii Ti '

2o2fI0) f_0)

where @ is the confluent hypergeometric function and

sphere diameter.

(3.34a)

is the
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Thus, in order to satisfy requirement I, _TGF must approximate the

function _MS = S / S' with _MS and '_MS given by (3.33-4).

_MS is a function of _, of the Mach number M, and of the "reduced

density" u(x). Figure 1 shows a plot of _MS(Cx,Ct = O) for a typical

case, _ = 0.2 and M = 10, together with the corresponding values of

_ for the BGK, Ellipsoidal and Polynomial (X 4 = -1) models. Figure 1

confirms the fact that all the emission functions for these models are

poor approximations to _MS" In particular, the Polynomial model's ani-

sotropic correction, while in the correct direction, is far too small.

The anisotropy of the Ellipsoidal model is also small but is physically

different from that of _MS" Rather than the correct bimodal departure

from isotropy, _E predicts less emission in the x direction for large

ICxl and more transverse emission near Cx = 0 (this is not visible in

Figure 1).

The dominant features of _MS are separate "hot" and "cold" compo-

nents. These components are associated with important streams of mole-

cules in the shock, the former with high-speed molecules returning from

the hot (T = T 2) side, and the latter with the highly collimated beam

penetrating from the cold (T = I 1) side. In all the previous models,

only the local temperature I(x) appears in _, preventing the descrip-

tion of these components with any accuracy. This difficulty is aggravated

by the fact that near either end of the shock, the principal perturbation

to a BGK-type emission function is the penetration of the component from

the other end.
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Requirement 2

This requirement is best satisfied if we express _TGF as a sum of

Maxwellian functions; the H kernel functions used for the earlier mod-
n

els will then reappear. Requirement 1 suggests that two of these Maxwel-

lian functions should be fl 0)- and f_O)-, with coefficients smaller

than their respective values (l-v) and _ in fMS" Thus we anticipate:

_TGF m_ kl(X) (l_v)flO) + k2(x ) _f_O) + ... , (3.35a)

with k l,k 2 <__I, to be determined later.

Requirement 3

A natural, and probably the simplest, function that may be included

in the ansatz (3.35a) is a third Maxwellian f_O) with parameters n3(x),

u3(x), and T3(x) chosen to assure conservation. However, to be physi-

cally reasonable for the shock problem, these parameters must satisfy the

conditions: n3(x) _0; u2 _ u3(x ) _ Ul; T1 _T3(x ) _T2.t This is be-

cause f_O) plays the part in TTGF of the smoothed component of the

distribution after collision, intermediate between f_O) and f_O). A

simple way to satisfy these conditions is to set k I = k 2 = k(x) in

(3.35a). The terms in

modal ansatz for _TGF

fl O) and f_O) then reduce to kfMs

is suggested:

and a tri-

TTGF = k(X)fMS + (l-k(x))f_O)(n3,u3,T3) (3.35b)

It is easily verified, using equations (3.35b), (C.3), and (C.4a-c), that

conservation requires:

In case the temperature overshoots near the hot side, i.e.,

the condition T 3 _T 2 can be relaxed,
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n3(x) : n(x) ; u3(x) : u(x) ; T3(x)

which will satisfy the conditions in all cases.

satisfies Conditions 2-3 of Section A, as _TGF

f + f(O) and it is rotationally invariant

T(x)-k(x). TMs(x)

(l-k(x))

Requirement 4

To obtain a suitable

striction that _TGF(_,m i)

The form (3.35b) also

reduces to f(O) when

_4 in the simplest way, we now make the re-

as given by (3.35b) should depend only on the

lowest moments mi, i = l to 3. This can be shown f to ensure that the

model will linearize to the BGK form (3.20). Accordingly, we choose as

the final form of the TGF emission function:

where :

_TGF = k(_)fM S + (l_k(_))f_O) (3.35)

f_O) = f(O)(n,u,T3) ,

T 3 = (T-k(_)TMs)/(I-k(_)) ,

TMS is defined by equation (C.4c) ,

and where k(_) is an adjustable function, less than unity, to be dis-

cussed below.

To linearize the TGF model we require a weak shock so that f ÷ fo(l+@);
_TGF becomes a linear combination of Maxwellian functions, with

parameters which differ from (nO,Uo,T O) by first-order quantities

related to the ai, i = 1,2,3. The llnearized conservation relations

are equivalent to._TGF_ _f(O)_- , i = 1,2,3 ,
jo - \ a-T-Jo

in the notation of Section B, which by (3.5b) ensures that the TGF and
BGK linearized forms are identical•
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Due to its linearization to the BGK form, the model has

for al 1

are :

_i = -I

i > 3, and consequently the Chapman-Enskog results (3.16-17)

KTGF = (P/u) , (3.36)

and:

Pr TGF = 1 . (3.37)

Modified versions of the TGF model could easily be constructed with

different values of _i' Pr, etc., by modifying the f_O) term in the

Polynomial or Ellipsoidal manner, for example.

the simple form adopted is that the eigenvalues

the function k(v).

The choice of

stated above, _TGF

An important advantage of

_i are independent of

k(v) is crucial for the success of the model. As

must fit the "hot" and "cold" components of _MS

within the shock, particularly where each of these components represents

the principal perturbation to local equilibrium, i.e., on the cold and hot

sides of the shock, respectively.

A fit kh(_) to the hot component of _MS is easily made; since,

as c + _, the hot component dominates, we have:

lim _TGF = k(_)_f_O)
C_

and using (3.33-4):

l im _MS = 2 _2 -_)_I _22/[(I + ] .
C -_oo

In the second limit we have used the result that _12 _" _22/c2

and have therefore omitted the term in

as c-_oo

12' Equating the two limits,

we obtain:
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kh(_) : _/[(I-_)_ 1 + _-_2] : _n2/n , (3.38)

</'_2 = nl/n2where we have used the results from (3.34) that and

_22 = _2f_ 0)"

A fit to the cold componentof _MS is madeby matching the cold

peaks corresponding to the T1 Maxwellian componentsof _MS and _TGF.

The two functions are equated at the peak itself, i.e., at cx = uI,

ct = O. Thus the cold fit kc(_), for fixed Machnumber M, is the

solution of the nonlinear equation:

T_kc(_)TMs_kc(_)fMS + (l-kc(_))f(O) n,u, l_kc(_ ) ] - (I-_)_ 1 + v_C"2

(3.39)

where all the coefficients _ and _ are evaluated at _= (Ul,O). The

solution of (3.39) must be found numerically. Only one physically appro-

priate solution exists and is easily found in practice.

The function k(_) can now be chosen. We must apply kh(_) for

÷ 0 and k (_) for _ ÷ 1 to achieve the desired behavior specified
C

above. In Figure 2 both kh and kc are plotted for a typical Mach num-

ber of lO, over the full range of _. The fits are different, though not

as inconsistent as Figure 2 may suggest; the largest differences occur at

the endpoints, where fMS and f_O) approach each other, reducing the

sensitivity of _TGF to k(_).

The best simple choice for k(_) is thus:

k(_) : min(kh,k c) . (3.40)

This choice assures correct treatment of the hot component near the cold

side and vice versa, as required.
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Fig. 2. Choice of k(v) for the TGF Model.

Applied at all values of _ within the shock, (3.40) is found to

give a very satisfactory fit of 9TGF to _MS" Figure 3 shows a typical

plot of this fit under the same conditions used for Figure I, from which

it is seen that the previous shortcomings in matching emission functions

to _MS have been largely overcome.
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CHAPTER IV

NUMERICAL METHODS

A. Discrete Form of the Model Equations

For each model considered we must solve a coupled pair of nonlinear

integral equations of the form (2.23) with logarithmically singular ker-

nels _. The independent variable t is first discretized; that is,

Eqn. (2.23) is enforced only at selected t values t i, i = 1 to N,

and an interpolation formula is used for each dependent variable n

(or u) and T at all intermediate values of t. The integral opera-

tor in each equation is replaced by a quadrature formula. The solutions

for n(t) and T(t) are then obtained by iteration techniques to be

described in the next section.

The particular methods used for discretization, interpolation and

quadrature are carefully chosen for their efficiency applied to the

present problems. They are based on the experience of Ahderson [32,33,34],

whose work on the BGK problem since 1963 is the most thorough and accu-

rate available. However, Anderson's published work does not include

several recent improvements made by him while overcoming certain numeri-

cal difficulties which he reported in his original study of the problem.

These improvements were made available to us privately by Anderson and

will be described here, as they remain unpublished.

I. Discretization and Interpolation Schemes

Both the discretization and interpolation schemes are based on the

use of an analytical "backbone" profile for increased accuracy. This
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backbone is a knownapproximate solution of the problem and its use

allows the selection of the meshpoints t i and the interpolation to be

improved accordingly. The points are placed initially so that differ-

ences of n (or u) between successive points are approximately con-

stant in the backbone. Later, points may be movedor added optionally,

to deal with special profile features in particular cases, such as a

temperature overshoot. Interpolation is done, not directly on the pro-

files themselves, but on the small differences between the computedand

backbone profiles; this is a more accurate procedure as long as the back-

bone remains a reasonable approximation to the model solution, which is

the case in practice. By these means N, the numberof t points re-

quired (which directly influences the running time), is kept to a mini-

mumof about 20-30 points, and additionally a very rapid low-degree

("cubic spline") interpolation formula can be used. Spline interpolation

is the mathematical analog of a draftsman's fairing between fixed points

on a drawing using flexible "splines" of thin wood. Mathematically, the

spline is a fit by piecewise cubics between points. The coefficients are

obtained by imposing continuity of first and second derivatives at the

meshpoints and minimizing the integral of the square of the second deriv-

ative over the full range of the fit. The very convenient recurrence

relations which govern the coefficients of such a fit are given in Chap-

ter 2 of the textbook by Ahlberg et al. [63].

In his original published work, Anderson used simpler but less effec-

tive methods. The infinite t interval -_ < t < _ was mappedinto a

finite z interval -I < z < 1 by the simple transformation pair sugges-

ted by Taylor's weak shock solution:

52



l+zt -_ _n_ ; z + tanh(t/6) ,

where 6 is a suitable scaling constant. This transformation pair was

coupled with Chebyshev interpolation in z with placement of the mesh

points z i at the extrema of the highest degree polynomial used. How-

ever, the symmetry of this scheme was found by Anderson to interfere

with a procedure (discussed in the next section) necessary to correct

unwanted translational shifts during solution. The new "backbone" method,

beside being more flexible and accurate, involves an asymmetrical trans-

formation from the infinite to a finite interval, which reduces the prob-

lem with the shift correction.

The backbone profile selected is an accurate analytical approximation

to the BGK shock solution developed by Macomber [20], and given in Appen-

dix A.2 of Ref. 20. We simply note that it is of the form:

t = _(Ub) ; ub = backbone velocity profile , (4.1)

with the inverse transformation:

ub = T-l(t) ;

nb = const./u b

(4.2)

This inverse transformation is not as convenient as before, involving the

numerical solution of a nonlinear equation (_ is an awkward sum of

logarithmic and algebraic functions). However, as shown in Section C,

this disadvantage can be overcome. The Macomber solution also yields a

temperature backbone Tb very simply in terms of ub.
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2. Quadrature Scheme

The quadrature scheme chosen is a compound Gaussian, tailored to

the shape of the kernels )_ of Eqns. (2.23). The formula is centered

at t' = t, where each _ has a logarithmic singularity, and the up-

stream (t' < t) and downstream (t' > t) regions are separated; each

region is further split up into three zones. Thus, if the integrals in

Eqn. (2.23) are written as f__-_(t';It-t'l)dt', the transition to the

÷

quadrature formula may be represented as follows, writing • z t' - t

w

and T z t - t':

oo oo

I =I
_oo 0 0

T2 _I . +
= .dT+ + + .dT+l + d_- _ _'dT-

L0 %T J'dT+ T2 J T 1

+

3 Lz 3 Lz

÷ _ _ "-_ + + + _ J_l _ (a]k)Wikk=l j=l (ajk)Wjk k=l "=

+ I_.dT
m

T2 -}

where the signs + and - denote the downstream and upstream regions,

+

respectively, the k index (1,2,3) refers to the zone number, and Wjk
+

and ajk are the Gaussian weights and abscissas. The values of _ at

these abscissas are found using the interpolation formula. Each Gaussian

formula is adapted to its particular T interval and requires L_ points

in all. As the treatment of the two regions is identical in manner, we

can discuss the details of the scheme simply by zone, as follows.
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Zone 1

This zone contains the singularity at T = 0, an imperfect treatment

of which will lead to profile inaccuracies, particularly on the downstream

side [31]. The interval (0,_l) is mapped onto (0,1) and the singular

and nonsingular parts of _ are separated:

_ =

I 1 _,_" dT = _i I

0
0

l

-- Tl I

0

a(T) + b(_)_n T ; • : Zly

l

a(_lY)dY + T1 I (£n y + _n _l)b(_lY)dy

0
1

[a(Tly) + _n T1 " b(TlY)]dY + _l I _n y • b(_lY)dy .

0

The first integral is replaced by a half-range Gauss-Legendre formula of

s
Ll points and the second by a special Gaussian formula of Ll points, adap-

ted to the singularity, for which the weights and abscissas are given in

Refs. 64 and 65. Thus in each region, the number of zone l points used is:

+ s (4.3)
Ll = Ll Ll

Zone 2

This zone covers the intermediate interval (TI,T 2) and is treated by

compound Gauss-Legendre quadrature; J subintervals of equal extent

(T2-TI)/J are each mapped onto (-I,I) and treated by a Kth-order Le-

gendre formula. Thus in each region the number of points used is:

L2 = J K (4.4)
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Zone 3

The final zone covers the interval

grand decays like exp(-_/6). The interval is thus mapped onto

and an Ith-order Gauss-Laguerre formula is used:

(T2,co), over which the inte-

(O,co)

(_ co

# J

0 0

I a i
_ _ J_(ai_)wie ,

- i=l

where wi, a i are Laguerre weights and abscissas on (0,oo). In each

region the number of points used is:

L3 = I. (4.5)

Thus for tile complete quadrature, using (4.3-5), the total number

of points used is:

+ + + Ll+L2+L3= Ll + L2 + L3 +

E s ]= 2 (L + LI)+ J. K + I ,

(4.6)

where in the second expression we have assumed that both ranges are

treated with the same number of points, as is usually the case.

s in (4.6) are adjustedThe choices of TI' T2' 6, I, J, K, LI, L1

by trial to preserve adequate accuracy while minimizing L. Typical

values are:

_I = .05

_2 = 9.

: 1.5

I = 6-12
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J = 8-15

K = 5

which lead to values of k in (4.6) within the range 104-194. Normally

a value close to the smaller of these is achieved, i.e., L _ lO0 in

practice.

B. Iteration Schemes

The solution of the discretized form of (2.23) must now be obtained

by iteration. Representing the dependent variables n(t i) and T(t i)

as a single vector z of dimension 2N, Eqn. (2.23) can be written as:

GZ = z ,

where G is a suitably chosen (nonlinear) iteration operator. An itera-

tion cycle is then denoted by:

z _+I : Gz _ , (4.7)

where _ is the iteration counter.

Special forms of G of particular interest are:

I. A Gauss-Jacobi operator Gj defined by:

z__+I = Gj_ _ ,

where all the values used on the right side are the unchanged compo-

nents of the previous iterate.

2. A relaxed Jacobi iteration defined by:

z _+I = [O_Gj + (l-e_ll]z _ ,
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where I is the identity operator and e_ is a parameter of

order l.

3. A Gauss-Seidel operator Gs defined by:

z£+I = G z £ _ Gjz £'
-- S-- --

where the values z___' on the right side are the latest available

data, i.e.,

z_' z z_ +l , k < i

£
- z, , k>i

K

4. A relaxed Gauss-Seidel iteration defined by:

£+I
Z = [O£G s + (l-e£)l]z _

Higher-degree iterations are also possible, in which combinations

of iterates from past cycles (£-j), j = O,I,2,...,D are used during

the (£+I) th iteration cycle, in order to accelerate the convergence.

Anderson [66] made an extensive empirical study of Jacobi-type iter-

ation methods for the BGK problem and concluded that the simple Jacobi

iteration (I), with or without relaxation (2), was uneconomical, as 50

or more iterations were required for convergence. He then developed a

higher-degree iteration 3-5 times as effective as (I), based on a 2N-

dimensional generalization of the secant method for nonlinear root-finding.

This "Extrapolation Algorithm" of Anderson is fully described in Ref. 66;

it takes the form of a quasi-linear combination of pairs of Jacobi iterates:

z _+l = linear comb.{_£,y__;z___-l,y__-l; ... ;zC-D,y_ _-D} ,
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with:

and

D _

y__ = Gjz__ ,

degree of process _ I-4 in practice.

The particular linear combination chosen is given in Ref. 66; it is quite

complicated in form. Because the coefficients of this combination depend

nonlinearly on the z_'j, the resulting form is only quasi-linear.

Anderson's method was found by him to require only 10-12 iterations

to converge the BGK problem, and similar results were found by us for all

the four models considered. However, the Anderson iteration is complica-

ted and conceptually difficult to understand. A simpler alternative was

felt to be desirable and we investigated the Gauss-Seidel approach.

Anderson did not consider such iterations in his work, possibly on ac-

count of the so-called "shift" phenomenon, which will now be discussed.

Because there exists no natural coordinate origin in the shock prob-

lem, the solution is spatially invariant: if _(t) is a solution then

so is z(t-to). An awkward consequence is that any iteration operator G

can induce a translation by t O as well as a shape change. The actual

size of t O depends on the discretization scheme, the operator G, and

the current iterate z _. Whereas, in an analytical approach, the value

of t O would very likely approach zero as convergence occurred, in the

discrete case the minimum-error solution to the problem is likely to have

a small but finite t O associated with it; if this is not accounted for,

the convergence of the solution will appear very much poorer than it is,

or divergence may be induced if an acceleration scheme is being used.

59



This shift phenomenon can be dealt with fairly simply in the case

of a Jacobi iteration: after each complete sweep the new iterate is

shifted to a standard reference point before any comparisons or combina-

tions are made with previous iterates. In practice, the point with aver-

age velocity u= (Ul+U2)/2 is moved to t = O. After reshifting,

residuals can be calculated, convergence estimated, and linear combina-

tions formed for any extrapolation scheme which may be in use. This was

the technique used successfully by Anderson and ourselves in conjunction

with his iteration method; as mentioned in the preceding section, suit-

able discretization and interpolation schemes must also be adopted to

ensure the effectiveness of the shift correction.

In the case of a Gauss-Seidel iteration, the situation is more com-

plex. The particular iteration GS that we developed involves a sweep

over the points t. from the cold to the hot side of the shock, in which
1

the two components n and T of zC+l are computed simultaneously at

_t
each given ti and then incorporated into the data _ for the rest of

that sweep. This is the third form defined on page 58. Clearly, if no

account is taken of possible shifts during this type of sweep, the shift

can accumulate and instability will result.

The situation is illustrated in Fig. 4. The upper plot is of the

simpler Jacobi case, where a shift by

u = u--) has been produced by the sweep

to produce errors of 6u(t;t O) in the

(not shown) of 6n(t;t O) and _T(t;t O)

tO (measured at the point where

z__+l = Gj_ _. The shift is seen

u profile and to similar errors

in the n and T profiles.

The scheme adopted for shift correction in the Gauss-Seidel case is illus-

trated in the lower plot. Before starting the full sweep from the point tl,
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sample Jacobi calculations are made at the two t i points which straddle

the value u = u, allowing a rapid estimate to be made of the t O value

which would be found after a full Jacobi sweep. Denoting this estimate

by to, the corresponding values of 6n(ti;to) and _T(ti;to) can then

be calculated and stored for all i, using the undisturbed z _ profile

as a basis. The full Gauss-Seidel sweep is then performed, the values of

_n(ti;t O) and 6T(ti;to) being subtracted from each new n(ti) and T(ti)

before these are incorporated into z L+I and the data z__L' Additionally,

a point relaxation scheme is incorporated so that the actual replacement

made at the i th point is:

z_+l(ti ) ÷ (l-g L) z_(t i) + @_Gjz_'(t i) _z_(ti;t;) ] (4.8)

This procedure results in a stable iteration in the problems studied. The

optimum value of 0k is found empirically to decline from a value of

_ 1.2 (over-relaxation) far from convergence, to _ 0.8 (under-

relaxation) in the final stages, with about 8-12 iterations necessary to

achieve convergence.

In all the work, convergence was defined as follows. Iterations

were continued until all monotonic trends in convergence had been elimi-

nated by the acceleration schemes. The remaining changes between iterates

were random in nature, due to rounding, etc. Statistical estimates showed

that good graphical accuracy was achieved in the work for both n and T

profiles (i.e., values determined to within _ 0.5%).

C. Programming Considerations

As shown in Section A, the discretized problem has L x N nodes, at

each of which the kernels _(/ must be evaluated once per iteration.
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Here L is the numberof quadrature points (_ 100-200) and N is the

numberof t i points (_ 20-30), resulting in values of L x N between

2000-6000. In practice, the lower figure of 2000 nodes usually proves

sufficient, and this will be assumedfor the rest of the discussion.

Thus a l-msec, operation within the main "node loop" of the program will

require 2 seconds of execution time per iteration, or about 20 seconds

for a full problem of I0 iterations.

An economical calculation must obviously minimize the numberof oper-

ations carried out at each node. This is achieved by:

I. Removingall possible parts of the kernel calculation from within the

node loop by careful setup of the program.

2. Optimizing all calculations left within the node loop, particularly

the H function evaluations.n

Somedetails of these methods are now given. All timings referred to

are for an IBM 360/67 computer.

I. Program Setup

To remove operations from within the node loop, we precalculate and

store all major items which do not change between iterations. Typical of

such items are:

--- The value of the backbone velocity ub at each node, involving the

nonlinear inversion (4.2). Each such value requires 2 msec. (or 4

seconds per iteration), but remains fixed unless the t i or quadra-

ture points change. The ub values are therefore calculated on the

first iteration of a problem and stored for all later iterations; they

can also be used for other problems with matching mesh and quadrature

points.
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--- For a TGFmodel problem, two major items can be calculated and stored

before the first iteration. First are the values at each node of

(ul°
H1 \r 1 ' r 1 ,/ It.t, i)and H1 \r 2 , r2

appearing in the kernels (Case 4 of Appendix A). Second are the coef-

ficients II' ;_22- ' 12' _ and '_2 which appear in the non-

linear fit (3.39) for kc(v).

2, H Function Evaluation
n

In each model there exists one set of H functions in the kernel
n

with arguments which depend on the current state of the iteration as well

as on the node. As convergence proceeds these arguments also converge at

each node, and we can use the Taylor series expansion (2.22b) about the

latest nodal value rather than a direct evaluation of each H . This
n

expansion takes about 4 msec. per node rather than about 20 msec. for the

direct evaluation; these times are for calculations of

from which all other H
n

(The case in which only

section.)

Hn, n = 1 to 3,

are rapidly derived by recursion relations.

HI is needed is discussed at the end of this

Values of Hn, n = 1 to 3, together with the argument values p

and q, are stored for each node. t These Hn values are obtained by

direct evaluation on the first iteration of a problem, or read in from a

suitable dump if available. On all later iterations the new nodal values

of p and q are first compared with the stored values (Po and qo )

at that node. If the differences _p = p - PO and 6q = q - qo are

t Nodes in quadrature Zone 1 are an exception, as here a splitting of
into singular and nonsingular parts is made and Taylor coefficients are
unavailable. For this reason,

reduce the number of direct Hn

H
n

LI in (4.3) must be kept to a minimum to
_alculations required in Zone I.
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suitably small, a third-order Taylor expansion (N = 3 in Eqn. (2.22b)) is

used to calculate Hn(p,q), n = 1 to 3. Only if the third-order terms

are unacceptably large, or 6p or _q are too big at the start, is a

new direct Hn calculation made, and in this case the store is updated

at that node.

This procedure is found to reduce the iteration time after 2-3 iter-

ations by a factor of about 4-5 from the nominal value of 40 seconds.

This, of course, reflects the substitution of a 4-msec. for a 20-msec.

process at most nodes. The necessary core storage is correspondingly

increased by 5 x L x N _ I0,000 words. At the end of a problem or

run, this Hn store can be dumpedto disk or tape and used to restart

later runs.

The procedure is worthwhile even when only the HI functions are

neededby a model. (In fact, only the Polynomial model requires Hn

values for n > I.) Use of the Taylor expansion requires Hn, n = 1 to 3,

to be available, as Hn functions for a wide range of n appear in the

coefficients of (2.22b). Direct evaluation of HI only; omitting H2

and H3, requires about I0 msec.; thus I0 iterations without the Taylor

methodwill require about 200 seconds, with 20 additional seconds for each

possible extra (or test) iteration. A problem with the Taylor method re-

quires about 40 seconds for the first iteration, a total of about 40 sec-

onds for the next three iterations, and then only 8-10 seconds per addi-

tional iteration, making about 140 seconds for I0 iterations. Besides

this saving, all extra (or test) iterations, including those on other

problems with matching meshschemes, can take advantage of the dumpof H
n

functions now available and thus require only about 8-10 seconds per

iteration.
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CHAPTERV

RESULTSANDDISCUSSION

A. Results of the Model Calculations

The basic results of the model calculations are density and tempera-

ture profiles in the t frame, for high Mach number. For all the models

studied, these profiles were found to be independent of M above M _ 5.

The results shown in Fig. 5 are for M = I0. The reduced density, _ =

(n-nl)/(n2-n I) and reduced temperature, T = (T-TI)/(T2-TI) are given,

with both profiles positioned so that _ = 0.5 at t = O.

The models studied are listed below, together with some comments on

the results:

I. BGK Model

These results agree exactly with those of Anderson [33], confirming

the accuracy of our numerical methods.

2. Ellipsoidal Model

These are the first exact calculations reported for the Ellipsoidal

model, so no comparison results are available. The density profile is

steeper than the BGK version and the temperature profile overshoots by I%

at the hot side. The temperature crosses the asymptote near t = I.

3. Polynomial Model (_4 = -3/2)

This model has the same linearized form as the Ellipsoidal model, al-

though a very different nonlinear form. Interestingly, the results are

practically indistinguishable from the Ellipsoidal model, and are not

plotted for this reason.
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9 Polynomial Model (_4 = -3/5)

This model has the same linearization as the exact Maxwell operator,

up to N = 5. However, the results are disappointing.

small overshoot of the density appears (_ 3% in _)

and the reduced temperature, which reaches 0.97 at

Downstream, a

beyond t = 4,

t = O, dips to

0.94 at around t = 3 before recovering to unity at high t. Upstream,

both density and temperature are unreasonably high. A plot is omitted

from Fig. 5 as these results seem of little interest; however, a plot for

this case is given in the next section, where it aids the discussion.

5. Polynomial Model (_4 = -I)

This model has the same _4 as the BGK model, but X5 = -2/3 and

Pr = 2/3. The density profile is shallower and the temperature rises

earlier than the BGK version. No overshoot exists in either profile,

and the results are physically reasonable.

6. TGF Model

The density profile is very close to that of the previous case. The

temperature profile is close to the previous case upstream, but approaches

the BGK temperature profile for positive t. Again, no overshoots occur

and the results are reasonable.

B. Comparisons with Monte Carlo Results

Monte Carlo results have been selected from several sources for

these comparisons, as no single source is sufficiently comprehensive.

Two groups of comparisons are made, one using the physical distance

as the independent variable and the other using the reduced density

X
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I. Profiles versus x/A 1

For all these comparisons the model results must be transformed from

the t frame into a physical x frame using Eqn. (2.16). We follow all

previous authors and use a "reduced" x frame, x/A I, where A1 is an

upstream mean free path for hard-sphere molecules, expressed in terms of

the upstream viscosity as:

: 1
A11 _ PlCl/_l

with _I defined as"

Pl = mnl '

Ul = u(TI )

2 (2RTI)I/2Tl = 177

As _ is proportional to T I/2 for hard spheres, A1

T 1

is independent of

priate:

separation:

K(mi(t)) = K(T) = p-_-_/J_4 j ,

together with the first-order Chapman-Enskog result [56] for

molecules with repulsion proportional to the inverse r th

I ):

Although only the Maxwell molecule case (r = 5) is consistent with

our basic assumption K _ K(c), we will for the moment follow earlier

authors and apply Eqn. (5.3) for all r. Results can thereby be generated

for all monatomic gases via their viscosity-temperature laws. We will
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(5.2)

_(T) for

power of the

(5.1)

(5.1a)

and is simply a convenient scale factor.

In order to use Eqn. (2.16), a form for K(m i) must be adopted.

Close to local equilibrium, the Chapman-Enskog result (3.16) is appro-



furthermore apply Eqns. (5.2-3) for all t, not just for regions of the

shock in which the gas is close to local equilibrium. Again this follows

the practice of earlier authors, and is another definite extrapolation.

These extrapolations have received little attention in the past, although

they are fundamental to the use of model equations of this type. A fuller

discussion of their effects upon our results is presented in the next

section. In the remainder of this section we simply display the results

and comment on their general appearance.

The t ÷ x/A 1 transformation adopted, using Eqns. (5.1-3), is:

- t
I_41PlCl F _(t) • dt

x/A l - " ] p(t)R?'({)
2_I to

(5.4)

Figure 6 shows the model results for Mach lO and r = 5, compared

with the Mach I0 Maxwell molecule Monte Carlo results of Bird [48] for

density and Perlmutter [45] for temperature. The latter was used in the

absence of a published Maxwell molecule density profile by Bird. Although

Perlmutter, unlike Bird, assumes an approximate target molecule distribu-

tion, his temperature profile is very close to recent provisional Maxwell

molecule results of Deiwert [67], who used a version of the Bird program;

Perlmutter's density profile also agrees very closely with Bird's density.

The Bird results of Ref. 48 were calculated at Mach 8, so a relation given

by Bird: (shock scale length)/A 1 = M4/(r'l) was used to convert those

results to Mach I0, i.e., a 25% scale increase was applied to the Bird

Maxwell profiles and a 9% increase to the argon (r = 12) profiles re-

ferred to in the next paragraph. The BGK density profile rises too late
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upstream but agrees well with Monte Carlo results downstream; the BGK

temperature profile is displaced by _ A1 in the downstream direction.

The Ellipsoidal model corrects the temperature displacement but shows den-

sity discrepancies both upstream and downstream; furthermore, a I% temper-

ature overshoot appears upstream for this model. The Polynomial (_4 =

-3/5) model agrees poorly with the Monte Carlo results; this case is in-

cluded here to aid the discussion in Section C. Both the TGF and Poly-

nomial (_4 = -l) models show excellent agreement with both density and

temperature Monte Carlo profiles.

Figures 7 and 8 show the model results assuming r = 12 and r = _,

respectively; the former corresponds to argon molecules [50] and the lat-

ter to hard-sphere molecules. The accompanying Mach I0 Monte Carlo results

are due to Bird [48] for r = 12, t and Hicks [43] and Bird [48] for r = _.

Both sets of comparisons show the same trends: all the models predict

steeper density profiles than Monte Carlo, and temperature profiles which

are displaced in the downstream direction. The BGK model shows the poor-

with Monte Carlo, the TGF and Polynomial (_4 = -I) modelsest agreement

show the best agreement, and the Ellipsoidal model shows intermediate

agreement.

2. Profiles versus

Plotting profiles against _ avoids the need for a t + x transfor-

mation, and also reduces the influence of Mach number and molecular force

law variations, allowing a wider range of Monte Carlo results to be inclu-

ded.

t The argon profiles were Mach 8 results, rescaled by 9%, as already
noted.
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Figure 9 shows the reduced temperature T = (T-TI)/(T2-T I) for the

models compared with Monte Carlo calculations using hard spheres [43]

and Maxwell molecules [45] at Mach lO. All results coincide upstream,

below about _ = 0.2 and T = 0.7. Further downstream, the Ellipsoidal

and Polynomial (_4 = -l) models show close agreement with Monte Carlo

results while the TGF and BGK models predict T values about 5% lower.

Figures lO and II show the results for viscous stress Txx and

heat flux qx' respectively. The most appropriate published Monte Carlo

results were chosen, namely those at Mach 8 for r = 12 by Bird [48].

A

The figures for both Txx and qx show that, as for T, the Ellipsoidal

and Polynomial (_4 = -l) results form one closely related pair, while

the TGF and BGK results form another. All the model results fall within

about I0% of each other in all significant ranges of TXX or qx' and

the peaks occur at the same values of _ for all models. However, the

models show definite disagreement in peak size and position with the

r = 12 Monte Carlo results. Some provisional results by Deiwert [67]

for r = 5 at Mach lO have very recently become available, and these

show significant differences from the Bird r = 12 results and closer

agreement with the models; in fact, they coincide almost exactly with the

Ellipsoidal/Polynomial pair of results.

Figure 12 shows the ratios ITxx/Pl and Ho/Ho, l which are related

to the departure from equilibrium within the shock. The first ratio is

zero and the second is unity at equilibrium. H0 is the total (or stag-

nation) enthalpy, equal to (5RT + u2)/2, and HO, l is the equilibrium

upstream value of HO. The Monte Carlo results are from Mach lO hard

sphere calculations by Hicks [43], and Mach 8 r = 12 calculations by
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Bird [48], respectively. In this case both Monte Carlo results are con-

firmed by Deiwert's provisional Mach I0 r = 5 results. The model results

again split into the same two pairs, the splitting being slight for

ITxx/P I but stronger for Ho/Ho, 1 with the Ellipsoidal/Polynomial pair

again in closer agreement with the Monte Carlo results.

C. Discussion

Four main aspects of the results warrant further discussion:

I. Validity of the t + x/A 1 Transformation

The derivation of the t + x/A 1 transformation (5.4) included two

extrapolations, noted as they were introduced" the retention far from

equilibrium of a Chapman-Enskog relation for K in terms of n, T and _,

and the inconsistent use for non-Maxwell molecules of a K that depends

on temperature but not on molecular velocity.

A very strong argument exists, however, to support the use of this

transformation (5.4). Both extrapolations are expected to be weakest at

high Mach number, but it will now be shown that at high M the use of

(5.4) leads to shock thicknesses, for all the models, which are propor-

tional to M4/(r-l), in agreement with Monte Carlo [48] and Mort-Smith

[16] predictions. Eqn. (5.4) can be written:

(constant) ' t u(t) _T(t)_ s-I

xI 1- o ul
(5.5)

(RTI)(I-2s)/2 t

I uTS_ld t ,
= (constant) Ul to

with :

_ 1 + 2
s = 7 r---T "

8O



At high M, by the Rankine-Hugoniot relations (2.13), RT 1 ÷ 16/5M 2 and

uI ÷ 4/vz3; further, all the model profiles versus t are found to become

independent of M. The shock thickness is therefore proportional only to

the factor multiplying the integral on the right hand side of Eqn. (5.5).

Thus, by (5.5), the shock thickness can be seen to reduce to a constant

times M2s-l, i.e., to a constant times M4/(r-l)

For Maxwell molecules, the transformation (5.4) is now determined up

to a constant scale factor set for each model by the parameter I_41 in

Eqn. (5.4). As discussed in Chapter III, Section F, during the derivation

of the TGF model, the value of _4 depends on the form of the emission

function chosen for a model. The BGK model (and the TGF model by deliber-

ate choice) have I_41 set at unity; the Ellipsoidal model has I_41 set

at 3/2; and the Polynomial model has _4 freely adjustable. The effects

of these scale factors can be seen in Fig. 6: the Ellipsoidal model,

which has the largest scale factor but an incorrect emission function,

shows distorted profiles with an over-stretched appearance. The Polyno-

mial model with the smallest value of I_41 = 3/5 shows the effects of an

over-contraction in scale. The BGK model with I_41 = 1 suffers from an

incorrect emission function, not a scaling defect, as shown by its agree-

ment with Monte Carlo results downstream but not upstream. The TGF and

Polynomial models with the same value of I_41 = 1 seem to be appropri-

ately scaled for their emission functions.

For non-Maxwell molecules, we expect the results to worsen progres-

sively as r departs from 5, due to the use of a velocity-independent

collision frequency. This is in fact seen in the results for argon

(r = 12, Fig. 7) and for hard spheres (r = _, Fig. 8). By comparison

81



with Monte Carlo, the models predict thinner density profiles, and tempera-

tures which rise too late upstream. For argon, the error in maximum

density-slope thickness is under 20%for the two best models (TGFand

Polynomial with _4 = -I), with about a 20%contraction of scale evident

in the downstreamdensity wing and negligible errors upstream. For hard

spheres and the samemodels, the thickness error is 25%and a scale con-

traction of up to 20%exists in the upstream density wing, and up to 50%

in the downstreamwing. Although the accuracy of the Monte Carlo density

profile is poorest in the wings, these discrepancies are almost certainly

due to shortcomings in the models, as they considerably exceed the Monte

t
Carlo uncertainties.

The divergence between the Maxwell molecule and hard-sphere results

indicates that the deficiency is most probably related to the use of a

velocity-independent collision frequency. Since, as will be shown later,

model calculations with a velocity-dependent K are difficult, and since

the Mott-Smith method is fairly accurate at high Mach number, this hypoth-

esis was tested by the latter method (see Appendix D). Mott-Smith calcu-

lations were made for hard spheres and for a model similar to ours, i.e.,

one in which the correct K(c) was replaced by the K(n,T) of the models.

The results show that this replacement leads to shock thicknesses contrac-

ted by about 15% (at Mach I0), and to small density and temperature dis-

crepancies upstream and larger density errors upstream, of exactly the

type found in our results. The quantitative effect is of course approxi-

mate, being less than the observed effect, but the qualitative effect shown

t
The Monte Carlo error bars shown in Fig. 8 are based on the spread re-

ported by Bird between Mach 25 and Mach I00 hard-sphere density profiles,
which both should agree with a Mach I0 profile.
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is very convincing as can be seen from Fig. 8, where a corrected TGFden-

sity profile is included, based on the method of Appendix D.

An even simpler qualitative explanation of the effect of the colli-

sion frequency upon shock thickness can be given as follows. Regarding

the shock as a diffusion process involving hot and cold components, the

shock scale at any point will be inversely proportional to someaverage

of the collision frequencies for cold-hot (I-2) and hot-cold (2-I) en-

counters. Assuminga bimodal-Maxwellian distribution function of the form

(C.2), the meancollision frequency for (I-2) collisions, per cold mole-

- =_ I0)_2cule, is Kl2(V) _ii f f (c)dc and the result for (2-I) collisions,

per hot molecule, is K21(_) - (l-v) f_0n2 f )_Z_l(C)dc. Here _II and S 2

are the loss functions defined in Eqn. (3.34a). At Mach10, setting

n2 = RT2 = 1 as usual, these meanfrequencies are: Kl2(V) " 6.8 v and

K-21(v) " 1.2(l-v). The effective average collision frequency at any point

in the shock is then _(v) = [(l_V)nlKl 2 + vn2K21]/n • 3.0v(l-v) using

nI = 0.257. According to the models, however, the same collision frequency

per colliding pair, K(T), is assigned to both (I-2) and (2-I) collisions,

i.e., KI2 = _n2K(T) and K21 = (l-V)nl_(T)" The value of K(T) is cho-

sen so that the correct hard sphere viscosity is obtained at local equil-

ibrium, which in turn requires that K(T) = _f f(0)Z(0)(c)dc, where
n

_Z_(0)(£) is the usual loss function defined with local Maxwellian param-

eters n, u, T. This yields K(T) = 4_l_r= 7.1 v_T, whence _12(v) "

7.1 _l_l'v and K21(v) " 1.8 v_l'(l-v). Averaging as before, we now get

K(v) " 3.6 _-_Tv(l-v)/n(v). At the center of the shock we have u = 0.5,

_r= 0.94, and thus we estimate that the model collision frequency is

3.4/(4n) while the more exact result is 3.0/(4n), which would lead to

a model shock thickness _ 13% smaller than the correct result.
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This result is gratifyingly close to the previous estimate of a 15%

effect, though both results are approximate and fall short of the observed

25%effect. Like the previous method, this method also predicts the same

qualitativebehavior of the correction through the shock: the greatest dis-

crepancies occur downstreamwhere RT is large; in fact the model and

exact profiles should have roughly the samescales when _ falls to

3.0/3.6, or RT_ 0.7, which occurs at v _ 0.2. This behavior is

seen qualitatively in Fig. 8. However, we must add a cautionary remark

here: to be more consistent when using the TGFmodel to predict hard-

sphere profiles, we should modify the fitting function k(_) of Fig. 2

to match _TGF to the hard-sphere emission function of Eqn. (3.34a)

rather than the Maxwell molecule function (3.34). The former has a cold

peak only about one-third as pronounced as the latter, leading to smaller

k(_) values, particularly in the region near v = 0.2. This case was

calculated and shifted the TGFhard-sphere profiles of Fig. 8 approximately

half-way toward the BGKhard-sphere profiles, thereby producing a marked

dip in the upstream density profile near _ = 0.2. Thoughthis modifica-

tion applies only to the TGFprofiles (i.e., it does not affect the very

similar Polynomial (I 4 = -I) profiles), it somewhatweakensour ability

to account in detail for all the hard-sphere profile discrepancies using

the present simple estimates.

2. The Effect of the Prandtl Number

The splitting into two pairs of all the model results plotted versus

(Figs. 9-12) seems to be significant. This effect is strongest for

the higher moments Txx and qx' particularly in combinations such as

Ho/Ho, I, which are sensitive to the relative peak positions of Txx and
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qx.f Becauseof the sensitivity of these results (particularly Monte

Carlo) to calculational inaccuracies, our conclusion must be a tentative

one, but it appears that the models split into pairs according to their

values of Prandtl number. Of the two pairs, the Polynomial/Ellipsoidal

pair with the correct Pr = 2/3 always agrees better with the most reli-

able of the Monte Carlo results (especially those of Deiwert [67]). The

TGF/BGK pair with Pr = l shows higher ITxx I values and lower lqxl

values than the first pair, which is the trend expected from the relation

pr_ m I xxJ/lqxl"

The incorrect value of Pr in the TGF model may also be responsible

for the poor agreement with Monte Carlo of the TGF temperature in the re-

gion x/A l _ 0 in Fig. 6. As shown by Fig. 9, models with Pr = l have

lower temperatures in this region than models with Pr = 2/3. As has

already been noted in Section F of Chapter Ill, a TGF model with a correct

value of Pr could be constructed quite easily by modifying the f_O)-

term of Eqn. (3.35) to either the Polynomial, Ellipsoidal, or other suit-

able form. This would very likely be at the expense of making the eigen-

values _i_ i > 3, depend on v, but this is not a great complication;

such an extension is recommended in Chapter VI.

3. Temperature Overshoot

Although not an important effect, a good deal of interest has been

shown (see Chapter I) in the existence or absence of a temperature over-

shoot in the shock problem. As Holway has shown [68], such an effect is

more likely to occur for softer molecular force laws: the contribution of

f The quantity (Ho/HI,o-I) is proportional to (_xxU-qx).
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a molecule to the temperature depends on the difference of its velocity

from the meanflow velocity; thus the farther back upstream that a hot

molecule can penetrate, the more likely an overshoot effect. Accurate

Monte Carlo results by Hicks [43] and Bird [46,48] show no evidence of

overshoot for r = _ or 12, and the approximate results of Perlmutter

[45] show none for r = 5. Additional evidence for the absence of over-

shoot at r = 5 is given by the provisional results of Deiwert [67].

This Monte Carlo evidence maynot be accurate enough to rule out the

existence of small overshoots of the order of I% in T. However, Hicks

[43] claimed average probable errors of under I% in his T versus den-
A

sity profiles, and he specifically examined dT/d_ for evidence of over-

shoot at high Mach number. Deiwert's results [67] had a similarly small

statistical scatter, and a least-squares fit performed for T(x) was

monotonic and did not reach unity within the downstream raDge studied

(25 units of A1 beyond x = 0).

The absence of temperature overshoot found in both the TGF and Poly-

nomial (_4 = -I) models therefore lends some further support to their

accuracy.

4. The Predicted Departure from Equilibrium

The comparisons of Fig. 12 show that all the models predict the stress

ratio l%xx/Pl very well. As discussed by Liepmann [29], and Baganoff

and Nathenson [27], this is an important parameter in determining shock

structure. The other sensitive parameter Ho/Ho, 1 is assumed to be unity

in the approximate theories of Becket [7] and Baganoff and Nathenson [27].

In Fig. 12 it is seen to reach I.II at Mach I0 according to Monte Carlo
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results and the Polynomial/Ellipsoidal pair of models, and 1.05 according

to the TGF/BGK pair.

These results appear to confirm that the models are capable of de-

scribing the departure from equilibrium rather well within the shock.
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CHAPTERVI

SUMMARYANDCONCLUSIONS

A. Summary

The structure of strong plane shock waves in a perfect monatomic gas

was studied using four nonlinear models of the Boltzmann equation. The

models involved the use of a simplified collision operator with velocity-

independent collision frequency, in place of the complicated Boltzmann

collision operator. The models employed were the BGK and Ellipsoidal

models developed by earlier authors, and the Polynomial and Trimodal Gain

Function (TGF) models developed during the work. An exact set of moment

equations was derived for the density, velocity, temperature, viscous

stress, and heat flux within the shock. This set was reduced to a pair

of coupled nonlinear integral equations and solved using specially adapted

numerical techniques. A new and simple Gauss-Seidel iteration was devel-

oped during the work and found to be as efficient as the+best earlier

iteration methods. Extensive comparisons were made of the model results

with Monte Carlo solutions, and significant aspects of the comparisons

were discussed.

B.

l .

Conclusions

Four main conclusions were drawn from the work:

The use of models allows rapid calculations of shock structure, and

solutions are obtainable for all Mach numbers above unity. In the

most interesting range of high Mach number the models are especially

convenient, as a single calculation provides the results for all M

except for a scaling quadrature.
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2. The model shock profiles, particularly those for the newly developed

Polynomial and TGF models, compare extremely well with Maxwell mole-

cule Monte Carlo results but less well for non-Maxwell molecules.

This latter deficiency is traced to the assumption of a velocity-

independent collision frequency for all the models. A correction

for this effect was developed and applied to the hard-sphere model

results, greatly improving the agreement with Monte Carlo.

3. Both new models are very adaptable. By two simple parameter choices

in the Polynomial model the profiles of both the earlier models can

be reproduced, and a third choice gives profiles in very close agree-

ment with Maxwell molecule Monte Carlo results. Alternatively, as

shown by the TGF example, improved models can be constructed by in-

corporating more physical data. In the TGF case, by physically

accounting for the bimodal features of the emission function, but

otherwise retaining the features of a BGK model, shock profiles

greatly superior to the BGK results are obtained.

4. For practical applications, models appear to be of greatest value

when used in conjunction with Monte Carlo methods. The relatively

expensive Monte Carlo method can provide benchmarks and ideas for

improvement for the models, which then can offer reliability, accu-

racy, and great gains in economy.

C. Possible Extensions

Three possible extensions can be suggested:

I. A relatively simple extension would be the development of a modified

TGF model with a Prandtl number of 2/3, as suggested in Section F

of Chapter Ill. This would allow a check to be made on the tentative
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.

o

conclusion of Chapter V that T, _xx' and qx are sensitive to

Prandtl number.

An extension to problems in more than one space dimension, such as

the oblique shock problem. Of particular value here would be a

method of extending the fit of the TGF emission function to more

than one dimension. Another valuable feature would be a procedure

to combine model solutions obtained in the shock zones with simpler

hydrodynamic solutions in outer zones.

A rigorous extension to models with velocity-dependent collision fre-

quency K(c). This would involve discarding the present formulation

in terms of t and the inclusion of more moments than at present,

both of which would lead to considerable loss of economy. The extra

moments could possibly be dealt with by the method of constitutive

relations [27], referred to in Chapter I. More detailed notes on

this possible extension are given in Appendix E.

90



Appendix A

Derivation of the Kernel Functions __ and _ for the Models
l

For each model we insert the emission function _ into Eqns. (2.21)

and perform the ct integrations using the relation:

oo

f 2 n!
0 x2n+l e'px dx - 2pn+ 1 (A.I)

The c x integrations are carried out formally using Eqn. (2.22a) to

_lexpress _n and _T in terms of the Hn functions. For this step we

he relation:

F fodCxF(Cx) LJ dt' dCxF(Cx) + dt' dCxF(C x)

The integrands of Eqn. (2.21) have the function

I It-t'l
_(Cx) _xx exp- T_ ,

oo OQ

OCx (Cx)

resulting in the form:

F(cx) equal to

dy _(y sgn(t-t'))exp- It-t'I (A.2)
Y Y '

where we have written y for ICxl.

Case I. BGK Model

For this model

Write _e r

F(Cx-U)2+c_l

__,mi) = f(Q)Cn,u,T) = nC2_RT) "3/2 exp - i 2RT | "

and use (2.21) and CA.2); L ]

. 2.^ 2

BGK I ct/zr I , , _ _ sgn(t-t')r
_n = 2_ctdcte 3 exp-

0 t2_13 r y

_GK I _ 3 exp,_ct,. 2"2r2" x{same integral}= ctdc t ) Y •
0

91

u(t')12+r I t-t'l],y



The result follows immediately using (A.I) and (2.22) in the form:

r I -n
Hn(p'_) : _ I

0

yn-2 exp-E½ (rY--p)2 +_]dY

We obtain:

n r _ r ' Fj

)_BGK = 3R2r_2 " /<BGKn

Case 2. Ellipsoidal, Model TtlTxl F(Cx_U)2 c2__Tt1For this model _(_,m i) = n(2_R) -3/2 - - /2 exp- L 2RTx +

Write: _z r x and: _ z r t, and follow an essentially

identical procedure as for the BGK model to obtain:

n rx rx ' rx

_<,ELL :_ 2r23R" --nJ('ELL

Case 3.

For this model,

(_-- _C2) }, wi th

The constants

8 (l+X51-_

?(c x,c t) :

Polynomial Model
_2 l 2,

_(_,mi) = f(0)(n,u,T).{I+nlTxxB2(bX-_ )+n2qxB2Cx

B = I/2RT and: _z _- u_.

nI and n2 are abbreviations for 2(I+_ 4) and

respectively. Writing v_l_'t-r_z r, we obtain first:

nlTxx 2 2

f(0)(n,u,T){l + _ _ (2Cx - 4uc x + 2u2 _ ct)

+ _n2qx (_Cx3 + 3UCx2 + Cx[5RT-3u2-c_] + U[-5RT+u2+c_])}
8r 6
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Again, following the procedure outlined above, and writing o

sgn(t-t') and understanding that u stands for u(t'), we obtain the

kernels:

_/PnOL _ r{HI1 + 6r-_nl_xx[H3 2°u H2 + I_-r 1)HI]

uI )q2qx [__H4 + 3UH3 3o - 1 H2 + r\r2 - 3 H1+ _ r - -r

2r {H + nITxx 2_U H2 + I__ 2)H ]: TR 1 6r_ [H3 r 1

+ _ [-_H4 +_--H 3 -_ - H2 + U_r z - l Hi]}8r 3 - r

The arguments of all Hn functions for the Polynomial Model are the same

as for the BGK model.

Case 4. The TGF Model

For this model,

Write:

_(c__,mi) = k(_). _l-_)f_0)+_f_0_+(l-k(_))f_0)(n,u,T3).

_ rI ,

v_2 - r2 '

v_ - r 3 ,

and:

aI = (l-_)k(v) ,

a 2 = _k(_) ,

a3 - 1 - k(_)
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Each Maxwellian function fl 0), i = 1,2,3, leads to a BGK-type

kernel contribution. Thus the TGF kernels can be written down simply by

reference to the BGK case:

_/TGF- ai {UlC_ It-t'l/+a2 /u2° t-t'l/ a3 tCu t-t'l_r I HI \r--l--' r I / _22 HI \r-T 'I +-- HI ( )o I• x n r 2 / r 3 r 3 ' r 3 /

7<_TGF 2alrl {Ul_ It-t'_+ 2a2r2 {u2o It-t'I1 + 2a3r3 {u(t')o It-t'Ii
- 3R HI_ T' r I / 3THI\r2 ' r 2 / 3--R--HI\ r 3 ' r 3 j
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Appendix B

Evaluation of the Bimodal Gain and Loss Operators

for Quasi-Maxwell Molecules

Wefollow the treatment and notation of Deshpandeand Narasimha [62]

(DN), making modifications where necessary to substitute a quasi-

Maxwell force law for their hard-sphere law. Their procedure applies to

both cases up to and including their equation (2.12), which is:

8_2 F dg y2g2
T FiFj ! bdb exp(- )

Bi
J

{im(2×g)gp-I B2m
m!xm

m=O

2FI (-m,-m;l ;_)}

(B.l)

where 2FI is the hypergeometric function, i m is a Bessel function de-

fined for all integers m by:

im(Z ) _ _ (z/2)-I/22 Im+i/2(z) , (B.la)

and with:

2 A A .
y = cos 2 _ + Bjisin2_ ; Bji = Bj/B i ,

A
× = C cos 2 @ + Bjicjcos _ ; _ _ _i - Bji_j ; _i

A (C sin 2_/2B) 2 B A Bj cjsin= ; = i _ ;

F i _ f(O)(ni,_i,T i) ; _ _ angle between

 c-ui ;

and cj

However, instead of now making the hard-sphere assumption,

we make the quasi-Maxwell substitution:

Bi I/2
b - o sin

g

95

b = o sin _,

(B.2)



remembering that all velocities including g in

dimensionalized with respect to _I/2

We now make use of the corrected t relation:

[ gp-lexp(-y2g2)im(_g)dg

DN have been non-

_,m+P •
_ m tt T)

= _ (2-_) _'P £(m+3/2)

@' 2'fm+P" m+3/2; (_/2y) 2)

(B.3)

Here @ is the confluent hypergeometric function.

We first perform the g integral in (B.I), noting that the value of

p in the quasi-Maxwell case becomes (m+3) rather than (m+4) for hard

spheres. Thus instead of the hard-sphere result of DN:

_(]C2_) m -4 I'(m+2)4-- Y £(m+3/2)

we get the resulttt:

@(m+2; m+3/2; X2/y 2)

6i 4 y-3exp (#/'{2) (B.4)

for the g integral in (B.I).

Now use of the identity quoted in DN:

2_

2F1 (-m;-m;1;_) - 2_1 I

0

together with the summation formula:

?(a)
£--(-6T@(a;b;x+Y) = Z

m=O

(I + _ + 2_I/2cos O)mdO

_F! @(m+a ;m+b ;x)

t The proof of the corrected version that we use is given in the Adden-

dum to this Appendix.
_t.J.

" Note that @(a,a,z) = exp(z).
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allows Eqn. (B.I) to be transformed to:

0

instead of the hard-sphere result of DN:

0

with:

exp(A'(O,_))dO

@(2,23--,A' (0 ,_))dE)

,(B.B)

A'(E),@) _ IX + B2( 1 + T + Tl/2cos O)]/y 2

We now apply the _-transformation, equation (2.14) in DN:

(l+Bji tan2#)-I - c°s2_2 =
Y

d_ = -Bjiy-4sin 2_d_

In the present case we find an extra factor of

1 - Bjisin2_
2

Y

y = I_ + (I-_)_-I/2Bji

in the expression, compared to the hard-sphere case; we obtain:

= exp(A(E),¢)) , (B.6)
i j _ Bi Bi Bj Bj i

0 0

with :

The transformations of DN's Appendix can now be appl ed, with the

same arguments leading to the conclusion that only the n = 0 term of

the spherical harmonic decomposition of exp(Q + R cos E)) will survive.

Thus in our case:
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IT

I exp(Q + R O)do -_ _io(R)ex pCOS Q

o
sinh R= _ eL_

R

and the _-integral in Eqn. (B.6) can be easily performed:

I (l-_) -I12 2B_i I/2 I/ ._I/2,
d_ : ( ) 2/(ITp.. )

0 BJi (Bji-l) _ji-l = 2Bji Jl

Thus we find:

_M_ : 2TF5/2c_2FiFj eQ sinh RI/2 I/2._I R '
((3iBj) (B i T_j/2)

and letting i tend to j _/'li -_ Fi4' R÷O and e ÷
#2

' ' " 1 ' we

(B.7)

al so find :

_MM1 = 2_2ni (B.8)

Addendum: Proof of the corrected relation (B.3):

Gradshteyn and Ryzhik (GR), p. 720, Eqn. 6.643, No. 2, give the

integral:

?(_+_12)eB2/2_

I x_-I/2 e-_Xl (2_/x)dx - ?(2_+I)B _-_M (B2/_) (B.9)2_ -_'_

0 2
The left-hand side can be transformed using x = y to:

O0 O0

2 I Y21Je-C_y212v(2By)dy A 4(_) I/2 I Y2_+I/2e-C_y2= i2__i/2(2By)dy ,

0 0 (B.9a)

using DN's definition of i m given in Eqn. (B.la).

The right-hand side contains the Whittaker function M
-_,_'

obeys the relation (GR, p. 1059):

which

M__,v(z) : z_+I/2 e-Z/2@(_+__;2v+l;z)
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Thus the right-hand side of Eqn. (B.9) can be written:

F(_+v+_) B2v_(_+v+i/2)_(_+_+i/2;2v+l;B2/_)
?(2v+l) (B.9b)

Now set

2
C_ + y ,

B + c_12 ,

i.e°_

(m + v +}) + l(m + O)

(2v+l) + m+ 3
2

With these substitutions, by Eqns. (B.9a) and (B.9b) we get our

relation (B.3) :

f yp_le_y2y2 I/2 m _I__I__i <_y)dy : (-_) (_) 2 2 r(_ £) _+__+9_;m_3;a 2
m r(m+3/2) " _2 2 (2"_)

0

m F(_) , (m__;m+ 23_,(_._y_y)2)
-4¢_'(_'Y-Y) Y-P F(m+_ "

In Deshpande and Narasimha, the first version of this result is given in-

correctly as Eqn. (2.13), in which the expression in curly brackets above

is replaced by y-I/2. This appears to be only a misprint, as DN's later

results are correct.
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Appendix C

Outline of the Mott-Smith Method

The Boitzmann equation and the associated boundary conditions for

the plane shock problem are given in Eqns. (2.1-13). The solution in-

volves evaluation of the molecular distribution function

in (2.1). Mott-Smith [14] proposed a simple ansatz for

f(_,x) = f(O)(n (x),u ,T ) + f(O)(nB(x),uB,T B)

where

eters

f(_,x) defined

f, namely:

, (C.l)

f(O) is the Maxwellian function defined by (2.2a) and the param-

us, uB, T , T_ are independent of position x.

All the six unknown parameters are to be found by enforcing as many

moment equations of (2.1) as may be required. Initial use of the moments

mi, i = I to 3 of (2.15), for which the collision contribution vanishes,

leads to the Rankine-Hugoniot relations (2.5-7) and the results that:

(a) The fixed parameters us, uB, T , T B reduce to the. endpoint

parameters Ul,U2,Ti,T 2 of (2.13).

(b) Only one of the space-dependent parameters n (x) and nB(x) is

independent.

Thus the Mott-Smith ansatz reduces in effect to:

f(c,x) A = (1_ (xl)flo) +- = fMS (c.2)

and f_O) being the end-

The relations between Mott-

and n_ and our own parameter v can be written:

with v(x) still to be determined and f{O)r

point Maxwellian functions defined by (2.la).

Smith's parameters n
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n (_x) = (_l-v(x))n 1C_

n_(x) = v(x)n 2 ,

n_(x)+nB(x)-n l
=

As soon as _(x)

fMS is known and all the moments

by (2.15) can be written as:

nMs(X)-n I

n2-n I n2-n I j

(C.3)

is determined, the Mott-Smith approximate solution

mi may be calculated: those defined

= + n B (C.4a)nMS n ,

nMSuMS = n_ul + nBu2 ' (C.4b)

nMS 3RTMs = n (u +3RTI) + nB(u +3RT2) - nMsuMs , (C.4c)

3 )2 2nMS• _TMS = n (Ul-UMs + nB(u2-UMs ) , (C.4d)

n (Ul-UMs)[5R(TMs-TI) - (Ul-UMs)2]

+ nB(u2-UMs)[5R(TMs-T 2) - (u2-UMs)2] -.

nMS 2qMS =

(C.4e)

All the results so far apply without regard to the detailed form of

the collision term in the Boltzmann equation. The solution for v(x),

however, requires the solution of one moment equation for which the col-

lision term is nonzero, and thus a collision law must now be assumed.

The solution for v(x) was found by Mott-Smith to be:

El Bx/AI] -I
1 - v(x) = + e , (C.5)

with A1 _ upstream mean free path, where the quantity B depends both

on the assumed collision law and on which moment equation is selected to
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be satisfied. Mott-Smitb gave results for B for hard sphere and Suth-

2 3
erland molecules, and for both the c x and c x moments. Other authors

have looked at the general set of moments c_ for a wide range of n

values [15], and at Maxwell and Lennard-Jones molecules [16].

obtained as follows. The c_ moment of theThe quantity B is

Boltzmann equation with the Mott-Smith ansatz can be written as:

! Idc °) + °)}
dx - x (C.6)

= v(x) (l-v(x)) f dc I dc_1 f gbdbd_(cx, n+cxl,n_cxn_cxln )flO)(c)f_O)(cl)

Using the Rankine-Hugoniot relations to express the endpoint parameters

in terms of the upstream conditions, Eqn. (C.6) becomes, after cancella-

tions:

d_(x) - _(I-_) f(M). I (C.7)
ax

where f(M) is a complicated function of the Mach number M only, and

i- : /2nl_(2)(T Ithe quantity I is a definite integral proportional to TI! /2.,

where:

2/(r-l)

@(2)(g) = (2_____) A2(r)g(r-S)/(r-l) , (C.8)

assuming point molecules with repulsion force K/d r at a separation dis-

tance do

We now follow the approach of Muckenfuss [16]. A generalized mean

free path A1 is defined, analogously to the hard-sphere definition (5.1)

but valid for all values of r:

- 57 • I/2
A{ 1 _ hPlCl/M 1 , c.f. (5.1) ; h = 32

f The quantity f(M).l is written as (4/X) by Muckenfuss in Ref. 16, and

X is defined by his Eqns. 9 and I0.
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which can be generalized to:

Ail ni_(22)/_ (C.9)

wi th :

_(22) _ ¢"_'I z6e-Z2¢(2)(2_lZ)dz

0

Because A11 has exactly the same dependence upon n, T, _ and r as

the integral I, the adoption of A1 as a scale factor eliminates the

dependence of all Mott-Smith solutions for point repulsion molecules upon

and the thermodynamic state ahead of the shock. The results depend

only on the Mach number M and a constant determined by r. (The moment

c n selected will also affect the results but we henceforth restrict our-
x

selves to the c 2 moment,) Equation (C,7) becomes:
x

dr(x) _ B(M,r) . v(l-v) , (C.10)
dx/A 1

which leads to the solution (C.5) already quoted above.
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Appendix D

Correction for the Use of a Velocity-lndependent Collision Frequency

Wewish to derive an approximate correction for the effect of re-

placing the collision frequency K(c) by K(n,T) in our models. We

shall do this here by applying the Mott-Smith method, outlined in the

previous appendix, to the unmodeledequations and then to the models. We

will treat the general case of molecules which are point centers of repul-

sion, and for this purpose will adopt the formulation of Muckenfuss [16]

already discussed in Appendix C. Here, the normalizing meanfree path

A1 is defined (ahead of the shock) in a consistent way for all values of

the repulsion index r. This definition of A1 via the upstream viscos-

ity is entirely consistent with our ownmodel formulation.

Weadopt the notation of Appendix C, except that instead of _(x)

we choose ×(x) l-_(x) as the independent variable. This allows the
= n(x)/n 1

temperature to be written conveniently as:

2 (D.l)
T(x)/T 1 = a + b× + c× ,

with:

a = (5M2-1)(M2+3)/16M 2 _ T2/T 1

b - (M2-1)/2M 2

c - 5(M2-1)2/16M 2

In the standard Mott-Smith theory, as shown by Muckenfuss [16], the

quantity ×(x) obeys the ordinary differential equation:

= - B(M,r) ×(I-×) , (D.2)
dx/A 1
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where the quantity B is given as AI/X _ B/4 in Figure 1 of Reference

16, as a function of Mach number M and force law exponent r.

For the models considered in this work, the approximation is made

that K is independent of c but nevertheless has a dependence on local

temperature T consistent with the local variation of viscosity with tem-

1 p_2/p(T). Within
perature, via the assumed relations: K(T) _ c/A(T) _

the Mott-Smith formulation this corresponds to replacing the expression

(C.8) for @(2)(g) by a quantity independent of g but proportional to

T-(r-5)/2(r-l) Following through the use of @(2) in Eqns. (C.7) and

(C.9) of the Mott-Smith formulation, it is easily seen that this results

in the replacement of the quantity B(M,r) in (C.lO) and (D.2) by the

quantity B(M,5) (T/Tl)(r-5)/2(r-l)

We will now confine ourselves to the case of hard spheres, for

which the K(c) effect is most pronounced. Equation (D.2) becomes:

IT \I/2
B(M,S)IT:) ×(I-×)

dx/A l
(D.3)

- B(M,5)(a+bx+c×2)I/2×(l_×) ,

where we have used Eqn. (D.l) in the second line.

The solutions of both the standard (D.2) and modeled (D.3) Mott-Smith

equations for X(X) can be found analytically, choosing the origins in

both cases at the point _(0) = I/2 as usual:

Standard x+x 0
Hard Spheres:

(H.S.) Al

Modeled x+x0
Hard Spheres:

(M.H.S.) A1

l

v'_B (M ,5) n

- _ ;_n (I + (a+bx+cx2)I/21-X

I05

+ al/2(a+b×+c×2)I/2× 1

(D.2a)

(D.2b)



In each case the quantity Xo/A 1

×0 = I/(I+_), which corresponds to the point _0 = I/2. Here

= 4M2/(M2+3).

In both cases the quantity × falls from the value l at x = -

to the value 0 at x : + _. Simple algebra shows that the point where

the density slope (dn/dx) is maximum occurs at the origin ×0 in the

standard case. The modeled case is not so simple, leading to a quartic

equation for the point of maximum slope, but for the case of large M

which is of interest we can obtain the approximate point as ×0 =

I/(l+_-b/2a). Using the conventional Prandtl definition of shock thick-

ness, X:

X/A 1

we then easily find that for large

cases lie in the approximate ratio:

(X/AI)MH S

(X/AI)HS

equals the respective RHS evaluated at

CA= n2/n I

(n2-nl)/(dn/dx)ma x ,

M the shock thicknesses for the two

_ B(M,oo) (D.4)
v_B(M,5)

For large M, a ÷ 5M2/16 and Muckenfuss [16] shows that the B

values tend, respectively, to 0.4685 for r = = and 0.9889/M for

r = 5. Thus we see that Eqn. (D.4) predicts a limiting ratio of 0.847

for the two thicknesses, i.e., a model thickness approximately 15% less

than the correct value.

More exact calculations for the particular case of M = I0 have

been performed, using Eqns. (D.2a-b). The respective density profiles

are presented in Fig. 13 and show a hard-sphere thickness of 2.134, a

modeled hard-sphere thickness of 1.824, and the ratio equal to 0.854.

Using these results, a correction for the TGF density profile of Fig. 8
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has been evaluated as follows: at all _ values in Fig. 8 the x/A 1

scale of the TGF profile is increased in the ratio ,.I_-I)HS / ,oxI_-_-I)MHS

measured in Fig. 13 at the × value corresponding to _. The correc-

ted TGF profile is in greatly improved agreement with the Monte Carlo

hard-sphere result, which appears to confirm the essential correctness

of the present estimate.
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Appendix E

Notes on Extending the Method

to Allow a Velocity-Dependent Collision Frequency

The following notes outline the steps necessary to extend the present

method to incorporate a velocity-dependent collision frequency. This is

done here without proposing any detailed new models; we use simple yet

realistic examples which point out the major sources of difficulty.

If we retain K = K(_), we must make the following modifications to

the treatment of Chapter II. The use of the t variable of Eqn. (2.16)

must be abandoned and Eqn. (2.17) becomes:

_f(c,x) _ K(c,x) {_(_,x) - f(c,x)} . (E.I)
Cx _x - --

After formal integration in x, and taking moments with @i(c)' we ob-

rain the new form for Eqn. (2.19):

oo X i

•_xl=W_c_0x_Ic,_I_,x,_<cx,ex_If _Ic'x_Ox1- - tCxl _x
-_ x (E.2)

We will restrict ourselves for this discussion to a BGK type of

model with emission function:

_(_,x) = f(O) _ N(x) exp - [(Cx-U)2+c_]/2RT , (E.3)

where we have written for convenience N(x) _ n/(2_RT) 3/2.

We note that the conservation relations now take the form:

o; fflEKfK_{_i }dc

where {_i} are the collisional invariants

Eqns. (E.4) with the choice (E.3) for

i = l to 5 , (E.4)

{I,_,c2}. In order to satisfy

_, our choice for K must contain
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P suitable adjustable parameters Pi(X), i = 1 to P; in general P = 5

but we confine ourselves to one space dimension, for which P = 3. Thus

we can write:

K = K(Cx,Ct; Pi(X) , i = 1 to 3) (E.5)

Using Eqns. (E.3) and (E.5) in (E.2), with a suitable choice of

@i(c) functions,

mi(x)

we obtain a set of moment equations like (2.21):

O0

= , i= I toM ,
--CO

(E.6)

with :

_i(x,x

and

,) = _ I_I _ _+I dc t c x e ]Cxl
z_ct e-C 12RT m -(Cx -u)2/2RT K(Cx'Ct'Pi (x))

0 -_

x' (x"))dx"
" exp - I I K(Cx'Ct'Pi 1 dCx '

C X
X

and m are integers determined by @i(_).

By comparing the kernels of the moment equations (E.6) with those of

(2.21), we can see that three main sources of difficulty have now been

added:

I. Instead of the kernels depending only on Ix-x'l and local quanti-

ties at x', they now contain integrals over the range x to x'

which will require numerical quadrature for evaluation.

. For all choices of K(Cx,Ct), except for the trivial cases K _

or K _ Cx, the conservation relations (E.4) for the Pi will in-

volve moments of f outside the set mi, i = 1 to 5 given in Eqn.

(2.15). Thus more than two moment equations will have to be retained

for solution, i.e., M in Eqn. (E.6) will be 3 or more.

II0



3. Previously the ct integration within the kernels was madeanalyti-

cally and the cx integration led to the convenient Hn functions,

as shownin Appendix A. For most physically interesting choices of

K(Cx,Ct) neither of these simplifications will hold, requiring

additional numerical quadratures for the kernel evaluation.

In practice wewould like to choose K to model the hard sphere loss

function _(0) (i.e., Eqn. (3.34a) defined with local Maxwellian param-

eters n, u, and T), or somesimilar function. For such a choice, all

of difficulties 1 to 3 will hold, leading to a very expensive numerical

calculation. Evena K of the form a + blCl,t which models _-_(0) very

well at high ICl, will not lead to any simplifications. If simpler

choices are madefor K we can partly overcome difficulty

I , K m a + bC2.

This is a good model for ,___(0)

allows the

the form:

I _+1
c t exp-(b/ICxl+ I/2RT)c_

at low values of ICl,

# 3 as follows:

.

and it

c t integration to be performed analytically; this is of

-(1+ _)
dct (b/ICxl + I/2RT)

However, as this cannot be expressed as a polynomial in ICxl, the

integration over c will not lead to H functions.
X n

K _ a + bC_, or K _ a + bc x.

These forms both lead to kernels expressible in terms of Hn func-

tions, but neither is a very good model for,,_ O)

t Here a and b are independent of c.
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